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The investigations of the atmospheric turbulence instability are carried out. The observations
of different stars and different positions of stars in the sky performed with the AZT-2 telescope
(diameter of 0.7 m) of the Main Astronomical Observatory, Kyiv, Ukraine, and at the Optical
Ground Station (the 1.0-m telescope) of ESA at Canary Islands are described. Short exposures
(40 ms) with CCD cameras in focal plane of objectives with the filters were used. The calculations
of middle positions of star images were performed. The deviation of star’s image positions from
the middle position was also performed. The atmospheric attenuation and FWHM (Full Width
Half Maximum) function were calculated using the MIDAS/ROMAFOT software package. The re-
sults of analyses of experimental data obtained due to observations in different regions are also
presented.

INTRODUCTION

Free-space laser communication systems can achieve very high data rates in comparison with radio commu-
nication systems, especially on deep-space distances. This complicated and mastered technology has been
proved by European Space Agency (ESA) in the world-first inter-satellite laser communication link between
its geostationary satellite ARTEMIS and the low Earth orbiting satellite SPOT-4 [5]. Laser communication
experiments are also being performed between ARTEMIS and the ESA’s Optical Ground Station (OGS) at
Tenerife, Spain [4].

ARTEMIS is a telecommunication demonstration satellite in geostationary orbit, positioned 21.5 degrees
East.

After matching calculations we showed that the same experiments of receiving-transmitting the information
by laser communication channel can be performed by using common astronomical telescopes. A meeting of
the representatives of ESA and the Main Astronomical Observatory (MAO) was held in June 2002 in Kyiv.
According to the meeting protocol, MAO can plan a laser communication link experiment between ESA’s
ARTEMIS satellite and the MAO’s telescopes (optical ground-based station) in Kyiv. After this meeting, MAO
started to prepare the laser communication link experiment with ARTEMIS [2, 3]. This will enable comparisons
of the laser beam propagation across the atmosphere in different regions, in particular, between the Atlantic
region (Canary Islands) and the continental region (Ukraine).

Investigations of atmospheric instabilities, in particular atmospheric attenuation and turbulence, are very
important for the ground– satellite laser propagation to determine an optimum beam divergence of the laser
power.

EXPERIMENTAL METHOD

The laser wavelengths used by ARTEMIS are 815–825 nm for the downlink and 843–853 nm for the uplink.
The divergence of the laser beam is approximately 1 arcsec, but atmospheric turbulence is strongly influencing
the laser beam propagation and the power density of laser radiation. It is interesting to compare atmospheric
instabilities between the OGS at an altitude of h = 2400 m above sea level and the telescope of MAO at
an altitude of h = 175 m above sea level (Kyiv).

For a first estimation of atmospheric instabilities, observations of standard stars were performed at eleva-
tion angles (air mass) similar to ARTEMIS. Common observations were performed with the guider telescope
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(F = 2.5 m, Din = 0.2 m) of the 0.7-m AZT-2 telescope at MAO, Kyiv using a TV format CCD camera (Chiper
Cam CPT-CDH70) and with the Coude CCD camera (Astro Cam 4202) at the 1-m OGS telescope (Fef = 11 m)
at the Teide Observatory, Tenerife, Canary Islands.

The technical data of the CCD cameras are shown in Table 1.

Table 1. The technical data of the CCD cameras

CCD camera Sensor Pixels Pixel size, μm FOV per pixel arcsec Used filter

CPT–CDH70 Sony 795×596 8.6×8.3 0.72×0.69 850 nm, Δλ = 10 nm
VersArray 1300F E2V CCD36–40 1340×1300 20.0×20.0 0.42×0.42 530–635 nm

The length of exposure was 40 ms with a 1 s time interval between exposures.
An example of a stellar image (α Aql) obtained with the “Sony” CCD sensor is shown in Fig. 1.

Figure 1. Image of star α Aql Figure 2. FWHM function

MEASUREMENT AND CALCULATION RESULTS

It is well known that the resolution of a telescope does not reach the diffraction limit by ground observations
because of atmospheric turbulence. The achievable resolution limit is dependent on the location of observation
site and for good sites it is about one arcsec without the use of adaptive optics. Atmospheric turbulence leads
to scintillation and image motion in the focal plane of the telescope. Image motion is caused by varying angles
by arriving a plane wave front. Scintillations are caused by brightness variations of stellar images and blurring
is caused by stellar diameter variations resulting from focusing or defocusing of the stellar light.

It is possible to retrieve information about atmospheric turbulence conditions from short-exposure images
of point sources (stars) in focal plane. A list of observed stars is given in Table 2.

Table 2. List of observed stars

Star V UT LST A (S) Z X

5276 6.39m 04/04 – 25.d91939 12h25m20s 320.86◦ 41.24◦ 1.326
α Lnx 3.17 05/04 – 20.80764 13 20 09 175.09 46.75 1.454
α Oph 2.08 05/04 – 20.99653 17 52 54 12.31 38.37 1.273
α Aql 0.80 05/04 – 21.03125 18 43 02 342.95 42.81 1.359
β Aql 3.70 05/04 – 21.03819 18 53 03 345.57 44.97 1.409

LST – local star time; A – azimuth; Z – zenith angle; X – air mass.

The processing of the short exposure (40 ms) stellar CCD images were performed using the MIDAS/
ROMAFOT software package [1]. The photometric calculations delivered the star magnitude M , the average
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Figure 3. Result of processing of observations of star # 5276 at OGS ESA

Figure 4. Result of processing of observations of star β Aql
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star magnitude from N images, the deviation ΔM , and the standard root mean square (rms) deviation σmag.
In addition, the calculations delivered the photometric center of every stellar image, the average photometric
center position for N images, deviations Δx, Δy, and the standard root mean square deviation of the photo-
metric center of stars from middle position in coordinate x and y (σx, σy).

For an estimation of scintillations or value of focusing of star images, the function Full Width Half Maximum
(FWHM) was calculated, as example see Fig. 2. As a result, we get a deviation ΔFWHM and a root mean
square deviation σFWHM .

The examples of calculation for stars from Table 2 are presented in Figs. 3 and 4.
The results of the summarized processing of the whole observational data are presented in Table 3.

Table 3. Results of the summarized processing of the whole observational data

Star V X σmag σx, arcsec σy, arcsec σF WHM , arcsec N images

5276 6.39m 1.326 0.330 0.495 0.712 0.396 50
α Lnx 3.17 1.454 0.246 1.049 0.662 0.623 16
α Oph 2.08 1.273 0.088 0.728 0.342 0.296 16
α Aql 0.80 1.359 0.065 0.498 0.812 0.241 16
β Aql 3.70 1.409 0.223 0.610 0.878 0.707 16

CONCLUSIONS

From analyses of experimental data and Figs. 3 and 4 one can see that there are no important differences
between σx and σy data for the OGS site and the MAO site. The image motion in focal plane is a result of
turbulence in higher altitude layers of the atmosphere (higher than 2400 m). The quality of images in the focal
plane for long exposures is similar and equal to about 2 arcsec on the sky. It is, therefore, assumed that if
the laser beam divergence in the future ground– space laser communication experiments with ARTEMIS is set
to double the seeing value, namely 4 arcsec, and if the laser power is sufficient a fast and fine pointing and
tracking mirror and control loop may not be necessary.

From Figs. 3–4 and Table 3 one can see that σmag for OGS observations is slightly greater than for MAO ob-
servations and can be determined by local time of observation. There is a difference of ΔFWHM /ΔM values for
observations at OGS and MAO too. ΔFWHM /ΔM is equal to –1.108 for OGS observations. ΔFWHM /ΔM is
equal to –2.607 for β Aql and similar for another MAO observations. The difference of ΔFWHM / ΔM values
may be determined from differences of fields of view per pixel for various CCDs. To obtain more precise results,
additional observations with similar focal length and filters are needed.
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