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The evolution of matter density perturbations in the two-component model of the Universe filled
with dark energy (DE) and dust-like matter (M) is considered. We have analysed it for two
kinds of DE with w # —1: a) an unperturbed energy density and b) a perturbed one (uncoupled
with the matter). For these cases, the linear equations for the evolution of the gauge-invariant
amplitudes of matter density perturbations are presented. It is shown that, in the case of the un-
perturbed energy density of DE, the amplitude of matter density perturbations increases slightly
faster than in the second case.

INTRODUCTION

The measurements of luminosity distances dy to the SN Ia stars as a function of the redshift have revealed
the accelerated expansion of the Universe [10, 11]. Until recently, for the interpretation of the gathered data
on the large-scale structure of the Universe, models with the positive cosmological constant A were preferred
by cosmologists. For such models, one can calculate the evolution of matter density perturbations up to
the formation of gravitationally bound systems of galaxies and clusters of galaxies (see [6] and references
therein). Search for a plausible physical interpretation of A-constant has introduced new terms in astrophysics:
dark energy (DE) and a quintessence for the notation of energy of unknown nature that repulses and involves
the self-attracting matter into an accelerated expansion. The classical A-constant is the simplest kind of such
energy. Now, the more general models of this component are under considerations (see for review [9] and
references therein). In some papers, the assumption of absence of coupling between DE and matter is used. But
in this case, the matter density perturbations lead to perturbations of the dark energy density [2, 3, 7]. Another
kind of DE is based on the assumption of an homogeneous and isotropic distribution of this component. Such
models predict an energy flow from one component to another or, in other words, DE and matter are coupled in
perturbed regions. In this paper, we will analyse the evolution of matter density perturbations for both kinds of
DE using the constant equation of state and w(PF) = P(PE) /o(DE) £ _1 where P(PF) and £(PF) are pressure
and energy density of DE, respectively.

DARK ENERGY

The influence of DE on the dynamics of the Universe and evolution of matter density perturbations can be
studied using analysis of Einstein’s equations and its presentation as an ideal fluid with the equation of state
P = we, where w is negative. In the case of w = —1, we have A-constant or the Lorentz-invariant dark
energy which can also be presented by the density of Lagrangian function £ = £ ({g;, }, {g;5,!}) that satisfies

the equation
1 I(v/—gL 0 0(/—gL
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where A = A ({g;.},{gix,}) is some arbitrary function. Einstein’s A-constant has the physical interpretations
of zero-point vacuum fluctuations, vacuum polarization or follows from some versions of the supersymmetry
theories. But all these interpretations converge to the fine tuning problem: at the Planckian epoch, the energy
density of matter was by ~ 120 orders larger than the dark energy one. This issue can be essentially relaxed
when w # —1 and depends on time, this case is usually referred as dark energy of tracker field kind. For such
a type of DE besides of the state equation and coupling of DE with the matter, we should define the vector

—

of 4-velocity (#, (#)? = —1) which indicates the direction of the energy flow. Using this vector we can define
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the 3d metrics tensor h;; = w;ur — g;;, in terms of the 4d space-time and thermodynamical parameters such as
energy density €, pressure density P, and stress-tensor o;:

. 1 . . 1 .
g = Tikuluk, P = g jlhjl, Ok = le (hzhh — gh]lhik> .

For cosmological applications, we used the constant equation of state P = we with w = 0 for the case of dust-like
pressureless matter, w = 1/3 for electromagnetic field, and w = —1 for the case of Einstein’s A-constant. For
the case of scalar fields, the general form of w = w(7) may exist. The scalar field has a density of Lagrangian:
L= 1870 ;—V(p) leading to e = 202 + V(p) and P = 1% — V(p) for ¢ which is homogeneously
and isotropically distributed on a 3d hypersurface. Such a kind of DE finds its interpretation in the framework
of the gravitation theory generalizations, e.g., the branes theory and theory of gravitation with a more general
geometry than the Riemann’s one or some unified theories of fundamental physical interactions.

MATTER AND DARK ENERGY

For a two-component model of the Universe consisting of matter and DE, the energy-stress tensor is represented
by T} = T(M)z + T(DE)Q. Conservation equations are written as V; (T(M)§€ + T(DE)}c) = 0, or, in other form,

ViT(M)}; = @ and ViT(DE)fg = —Qy, where Q = {Qx} is vector of an energy flow [5]. For the general case,
one should define the vector of the energy flow between two components.

We assume an unperturbed DE and comoving matter and DE on an homogeneous and isotropic background.
This simplification leads to V;T(P E)z =0, where V; is a covariant derivative in the isotropic and homogeneous
space with a metrics tensor g;. The real perturbed space-time presented by the metrics g;,. The motion

equations for particles comoving to the unperturbed background and DE (in the case of EE,?E) = () are as

follows: )
dﬂi

= T, @a" = I}, @a" + f, (1)

where fjk and Fik are the Christoffel symbols defined for the metrics g;. and g;,, respectively,

fi= (Fz F )W is vector of an additional force needed for an homogeneous distribution of DE in the regions
of perturbatlons. The energy flow vector is Qy = V,; TP E — V,TPE) i that gives

Q W] T(DE)l Wl kv

with a tensor ij = F;k — f;-k. The definition of perturbations is ambiguous and depends on the choice of

a gauge.
The metrics in a longitudinal gauge has the form

ds® = a(n)’[~(1+ 29 ()Y (z%))di® + (1 + 22(1)Y (2%))dp,da’ da?],

where @ (1) and ¥() are Bardeen’s potentials [1]. Non-zero components of tensor W, according to this metrics
are the following (a, 8 =1, 2, 3):

Wo =Y, WY, =W = —kV¥Y,, W =-k¥Y",
Wy = Why =0Y, Wi, = (2%(@ —0) + <i>> Y,
Wg Wfﬂ = —k®Y,, and Wgz;=Fk®Y" for a+# (8 (nosumon j3).
Thus, the components of the energy flow and additional force vectors are
Qo = 38EPP) 4 PPEYY, Q, = k¥ (PP 4 pPE)y, (2)
and
o= 0y, fo=—kvye, (3)

respectively.
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EVOLUTION OF MATTER DENSITY PERTURBATIONS

Formation of the large-scale structure of the Universe is described by the linear theory of scalar perturbations.
We use here the gauge-invariant approach presented in [1, 4, 5, 8]. We have considered a case of a two-components
universe with small perturbations in the dust-like matter component and no perturbations in the DE component.
The non-zero components of energy-stress tensors for every component are

TAN0 — _z00) (1 4 gDy) 7D _ z00) L Py - pna 00 Oy ya

—(M) _ —(DE)
T = P14+ 7MY)s5 + TTMYg], TWPEY = —gPE) - pPEe - P75

where ¢ and v are perturbations of the energy density and velocity, respectively, 7(™) and II(M) are isotropic
and anisotropic components of pressure perturbations (over-lines denote the background magnitudes). From
Einstein’s equations 0G) = 47GOTY), §GO = 4rGTY, and 6GS = 4nGSTH, we obtain the following connection
between perturbations of metrics and perturbations of the matter density and velocity:

AnGa’z M DM — (k2 — 3K)®, (4)

AnGa (M + Py OD — g (<Z> U — ci>> : (5)

4nGa?PMIOD = 20 4 ). (6)

The conservation equations 7'M )6“ = Qo and 6TM )fy‘i = @, lead to the following equations for the matter

density and velocity perturbations:

DM 1 3(e2 — YLD L (1 4 (D)D) 4 3,00 Sp(n) P
& s a 8 a g(M)

. ; 2 (M) 3 3K
M) QoMY g a2ey R s @R a3 (0 3K\
VOO 421 -3V BV = 33®) — = DY - e |1 S (1-77 )

e(PE) 1 4 (PE)
eM) 1 4 (M)~

(1+ wPE)

. V 2
where V. =v, Dg =6+ 3(1 +w)®, D =6+ 3(1 + w)g—, D =r—%6are gauge-invariant amplitudes [1-8]
w

(2 = P/¢ is a square of the sound speed). ok

For DE component, we have (5T(DE)6|i = —Qp and (5T(DE)fl|i = —Q, that gives the equations DPE) = ( and
V(PE) — (. If we suppose initial zero perturbations of dark energy (Dng) =0, FE,?E) =0, and VileE) = O)
then D(PE) = V(PE) —

For the dust-like matter II(M) = ch) =wM) = TM) = the conservation equations are simplified:

(DE) c(DE)

(M)

9
e(M)

DM L kv OD = _365 (14 wPE)), yOD 4 Ly gy = ppS (14 w(PD), (7)
a

The set of Eqgs. (4)—(6) and (7) describes the evolution of scalar perturbations of matter in the Universe with

DE which is homogeneously distributed over the whole space. For the case of DE uncoupled with the dust-like

matter, the right-hand sides of Egs. (7) will be equal to zero. In this case, the energy density of DE will trace

matter density perturbations by means of metrics perturbations, so, it will be perturbed [2, 3, 7]. The evolution
of perturbation amplitudes of the matter density DéM) for the two cases of DE (with an unperturbed energy
density and a perturbed one) are shown in Fig. 1. For the calculations, the following values of parameters

have been used: the constant state equation parameter of DE is w(PE) = —0.8, the current contents of DE
and matter are QPF) = 0.7 and QM) = 0.3, respectively, and the dimensionless Hubble constant is h = 0.65.

The amplitude DéM) is larger for the case of the unperturbed DE that is stipulated by an energy flow from
the DE component to the matter one in a perturbed region.
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Figure 1. The dependence of D(gM) on scale factor a for two kinds of DE: the uncoupled with the dust-like matter DE

(dashed line) and unperturbed DE (solid line). The state of DE is wP®) = —0.8 and other cosmological parameters are
QPF =07, Q™M =03, k=10"" Mpc™', h =0.65

CONCLUSIONS

We have analysed the evolution of matter density perturbations for two kinds of dark energy: (i) unperturbed
homogeneously distributed DE and (ii) uncoupled with dust-like matter DE. The expressions for the energy
flow between components (2) and an additional force which keeps a homogeneous distribution of DE (3) as well
as Equations for the evolution of matter density perturbations (4)-(6) and (7) are obtained. Their numerical
solutions show that the gauge-invariant amplitude of matter density perturbations increases in the case of
the homogeneously distributed DE slightly faster than in the case of dark energy uncoupled with the matter.
This difference can be explained by existence of an energy flow from DE to the dust-like matter and the additional
force smoothing DE.
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