Функциональная связь между концентрацией трития и активностью адсорбента

А.А.Хомич, В.В.Кириченко, А.Ю.Буки, Н.Г.Шевченко

ИФВЭЯФ ННЦ ХФТИ, г. Харьков

•1. ВВЕДЕНИЕ

В работе на базе модели мономолекулярного слоя физической ДЛЯ адсорбции рассмотрены соотношения, однозначно связывающие активность адсорбента с концентрацией адсорбата. Так, измерять активность адсорбента, можно определить концентрацию адсорбата. Оценки показали, что в случае малой концентрации трития (~10-9 Ки/л) при времени нахождения адсорбента в атмосфере адсорбата, равной 10 сек., и площади адсорбента, равной 1 см² активность последнего возрастает на несколько порядков. При этом предполагалось, что адсорбент холодный, поэтому десорбция учитывалсь.

В первом разделе рассмотрено уравнение эволюции адсорбции в предположении, что давление и температура адсорбата поддерживались постоянными. Во втором разделе учитывалось изменение давления из-за адсорбции. Проводятся численные оценки для атомарного трития и молекул TH и T₂.

●2. ЭВОЛЮЦИЯ АДСОРБЦИИ ПРИ ПОСТОЯННОМ ДАВЛЕНИИ

Основы теории адсорбции изложены во многих монографиях и учебниках [1-4]. Используя эту информацию, остановимся на некоторых соотношениях и понятиях, небходимых для получения рабочих формул. Если частицы адсорбата поступают на поверхность вещества из газообразной фазы, то, согласно кинетической теории газов, число частиц $Y_{\rm a}$, адсорбированных за единицу времени единицей площади поверхности, определяется соотношением:

$$Y_a$$
= $\alpha(1-\Theta)P/(2\pi MKT)^{1/2}$, (1) где P – давление; M – масса адсорбированной ча-стицы; Θ = N/N_1 – степень покрытия; N – число ча-стиц, адсорбированных на единице площади; N_1 – число частиц на единице площади, образующих мономолекулярный или моноатомный слой; α — коэффициент конденсации, указывающий какая часть частиц, падающих на чистую поверхность, адсорбируется ею. Сделаем предположения: 1) адсорбент является холодным и пренебрежем испарением частиц с

холодного адсорбента; 2) вероятность адсорбции пропорциональна величине 1- Θ ; 3) площадь адсорбента равна некоторой величине S; 4) давление адсорбата поддерживается постоянным; 5) к адсорбату применимы законы идеального газа; 6) период полураспада адсорбата достаточно большой, так что можно пренебречь распадами за время наблюдения.

За время dt на поверхность адсорбента падает Sndt частиц, где n — поток частиц в единицу времени на единицу поверхности. Из них на адсорбенте остается:

$$dN = (1-\Theta) \text{ andt.}$$
 (2)

Учитывая, что N=O N₁, получим:

$$d\Theta/dt = \alpha n (1-\Theta)/N_1. \tag{3}$$

Решая уравнение (3) при начальном условии t=0, $\Theta=0$, получаем:

$$N=N_1(1-\exp(-\alpha nt/N_1))$$
 (4)

Принимая во внимание, что $n=P/(2\pi MKT)^{1/2}$ и $P=n_xKT$, где n_x – концентрация адсорбата, получим

$$N = N_1 [1 - \exp(-\alpha n_x t (KT/2\pi M)^{1/2}/N_1)].$$
 (5)

Таким образом, за время нахождения адсорбента в атмосфере адсорбата $t_{\scriptscriptstyle H}$ на поверхности адсорбента накопится $SN(t_{\scriptscriptstyle H})$ частиц.

В общем случае частицы могут быть моле-кулами, содержащими несколько радиоактивных ядер. Пусть количество радиоактивных ядер частицы равно m. Тогда за время наблюдения $t_{\scriptscriptstyle H}$ на адсорбенте накопится радиоактивных ядер:

$$N_{H}=mSN(t_{H}). (6) B$$

момент времени $t_{\scriptscriptstyle H}$ активность адсорбента составит:

$$A=\lambda N_H=\lambda mSN(t_H),$$
 (7) где

 λ — постоянная распада.Из соотношений (5), (7) следует связь между концентрацией адсорбата \mathbf{n}_{x} и активностью адсорбента A:

$$n_x \!\!=\!\! N_1 (2\pi M/KT)^{1/2} \, ln[1/(1\!-\!A/mSN_1\lambda)]/\alpha t_{_{\!H^{\!.}}} \eqno(8) \quad B$$

формуле (8) $A/mSN_1\lambda$ представляет отно-шение активности адсорбента, полученной за время наблюдения t_{H} , к его активности, когда он полностью покрыт монослоем.

Пусть условия измерения таковы, что величина β =A/mSN₁ λ <<1. Тогда, разлагая (8) в ряд по степеням β и ограничиваясь линейным членом, получим:

$$n_x = A(2\pi M/KT)^{1/2}/t_H mS\lambda \qquad (9)$$

Проведем численные оценки по формуле (9) для атомарного трития T, а также молекул T_2 иТН. Положим начальную активность трития близкой к предельно допустимой ~ 10^{-9} Ки/л (~ 2.0510^{13} част./м³). Примем следующие значения исходных величин:

S=1 см², N_1 =15.2Ч10¹⁸ м², время нахождения адсорбента в атмосфере трития t_H =10 сек., коэффициент конденсации α =1, λ =1.802Ч10⁻⁹ сек⁻¹, T=300°К. При этих условиях активности атомарного трития A^T и молекул согласно формуле (9) будут равны соответственно: A^T =1.3Ч10⁴ сек⁻¹, A^{TH} =1.1Ч10⁴ сек⁻¹, A^{T2} =9.5Ч10³ сек⁻¹. Таким образом, видно, что активность адсорбента в течение 10 сек может возрасти на четыре порядка. Если измерять эту активность, то согласно формуле (9) можно определить концентрацию адсорбата.

•3. ЭВОЛЮЦИЯ АДСОРБЦИИ С УЧЕТОМ ИЗМЕНЕНИЯ ДАВЛЕНИЯ

В этом разделе будем предполагать, что адсорбат занимает известный объем V и одновременно все сделанные выше допущения, за исключением постоянства давления, которое изменяется в результате адсорбции. При этих условиях, как показано в работе [5], степень покрытия **0** будет описываться уравненим:

$$d\Theta/dt = \alpha q \ n_x(0) (1-\theta)/N_1 - \gamma \Theta + \gamma \Theta^2, \tag{10}$$

где $\gamma = \alpha q S/V$; при t=0, $\Theta=0$.

Уравнение для концентрации n_x имеет вид:

$$dn_x/dt=\gamma (n_x(0)V/N_1S-1) n_{x-} \alpha q n^2_x/N_1$$
, (11) где $q=(KT/2\pi M)^{1/2}$.

Решение уравнения (10) при $N_1SN_2^0n_x(0)V$ имеет вид:

 Θ =(1-exp(- γ (1- δ)t)) δ /(1- δ exp(- γ (1- δ)t)), (12) где δ =n_x(0)V/N₁S — отношение числа частиц адсорбата в начальный момент времени к максимальному числу частиц, которые могут конденсироваться на адсорбенте с площадью S. Решение уравнения (11) в случае N₁SN^on_x(0)V можно представить в виде

$$n_x(t) = n_x(0)(\delta - 1)/(\delta - \exp(\gamma(1 - \delta)t))$$

В случае, когда $N_1S=n_x(0)V$, уравнения (11) и (12) принимают вид:

$$d\Theta/dt=\gamma(1-\Theta)^2$$
, (14)

$$dn_x/dt = -\gamma n_x^2 / n_x(0).$$
 (15)

Решениями этих уравнений соответственно будут:

$$\Theta = \gamma t / (1 + \gamma t), \tag{16}$$

$$n_x(t) = n_x(0)/(1+\gamma t).$$
 (17)

К соотношениям (16), (17) можно также прийти, устремив $\delta \rightarrow 1$ в соотношении (12), (13) и раскрыв соответствующую неопределенность по правилу Лопиталя.

Число частиц, адсорбировнных единицей пло-щади поверхности, определяется формулой:

$$N(t) = \delta N_1 [(1 - \exp(-\gamma(1 - \delta)t))/(1 - \delta \exp(-\gamma(1 - \delta)t))]. (18)$$

Отметим, что при $V \rightarrow \infty$ формула (18) переходит в соответствующую формулу раздела 1.

Пусть адсорбент был в среде радиоактивного адсорбата в течение времени $t_{\mbox{\tiny H}_{\mbox{\tiny L}}}$ а частицы адсорбата имеют m радиоактивных ядер. Тогда активность адсорбента составит

$$A = m\lambda SN(t_{H}). \tag{19}$$

Когда $\delta <<1$, тогда, разлагая (18) в ряд по δ и ограничиваясь линейным членом, получим

$$A=m\lambda n_x(0)V(1-\exp(-\gamma t_H)). \tag{20}$$

Оценим нарастание активности адсорбента во времени, используя формулу (20). Пусть t_{L} – время, в течение которого относительная активность достигает уровня $L=A/A_{\text{max}}$. Здесь A_{max} – активность адсорбента, когда он полностью поглотил адсорбат из объема V. Заметим, что

$$t_{i} = V \ln|1-L| / \alpha q S. \tag{21}$$

Взяв объем адсорбата 1 м^3 с объемной активностью 10^{-9} Ku/л и адсорбент площадью 1 см^2 для атомарного трития T и молекулы TH, получим данные, которые показаны в таблице.

t _{L,} сек; тн	t _{L,} сек; _Т	А, сек ⁻¹	L
1.96	1.69	$2.21\ 10^3$	0.06
3.30	2.84	$3.62\ 10^3$	0.10
7.10	6.12	$7.38 \ 10^3$	0.20
16.20	13.90	1.48 10 ⁴	0.40

Таким образом, активность адсорбента приблизительно за 10 сек достигает около 10⁴ распадов/сек. Все это в совокупности указывает на принципиальную возможность использования адсорбции для измерения малых концентраций радиоактивных газов. Следует подчеркнуть, что сконструированный с использованием этого явления прибор может иметь линейную шкалу.

●Литература

- **1.** Л.Д. Ландау, Е.М.Лифшиц.Статистическая физика.Ч.1,М.:Изд.Наука,1976.
- 2. С.Дешман.Научные основы ваккумной техники.М.:Изд.Мир,1964.
- 3. Н.В. Черешнин. Сорбционные явления в ваккумной технике. М.: Изд. Советское радио, 1973.
- **4.** Л.Н.Розанов. Ваккумная техника.М.: Изд.Выс-шая школа,1990.

5. А.Ю.Буки и др. Препринт ХФТИ 97-10/Харьков: ННЦ ХФТИ, 1997, -8 с.

Статья поступила: в редакцию 25 мая 1998 г., в издатеульство 1 июня 1998 г.