Поляризованная дейтронная мишень

А.А.Беляев, В.А.Гетьман, А.П.Дзюбак, И.И.Карнаухов, И.М.Карнаухов, А.А.Луханин, П.В.Сорокин, Е.А.Споров, Ю.Н.Телегин

ИФВЭЯФ ННЦ ХФТИ, г. Харьков

В ННЦ ХФТИ в течении ряда лет проводились экспериментальные исследования поляризационных параметров Σ , T, P, G и H в фоторождении π^+ и π^0 в области первого пион-нуклонного резонанса [1–3], в которых использовалась поляризованная протонная мишень с широкоапертурной сверхпроводящей магнитной системой [4]. На базе этой мишени была создана поляризованная дейтронная мишень (ПДМ), на которой были проведены исследования Тасимметрии сечения фоторождения π^- - мезона на нейтроне в этой же области энергий [5].

В данной работе представлены результаты разработок и исследований ПДМ по состоянию на сегодня. Описаны результаты исследований рефрижератора растворения 3 Не в 4 Не, методика и результаты обработки дейтронного спектра по вычислению поляризации дейтронов в аммиаке и экспериментальные данные Т-асимметрии сечения фоторождения π^- -мезонов в области первого пионнуклонного резонанса на поляризованном нейтроне.

Результаты по исследованию ЭПР-спектров в облученном дейтерированном аммиаке и отдельные элементы дейтронной мишени представлялись на конференциях и рабочих совещаниях по поляризованным мишеням [6,7].

Высокая поляризация дейтронов достигается методом "динамической поляризации" в магнитном поле с индукцией 2.7 Тл и неоднородностью не хуже $\pm 1 \times 10^{-4}$, создаваемом магнитной системой [4] в объеме 30 см³ и при температуре 0.2-0.3 К, для чего используется рефрижератор растворения ³Не в ⁴Не, разработанный на основе криостата непрерывного потока ³Не-⁴Не [4]. Для накачки поляризации использовался СВЧ- генератор на лавино-пролетном диоде с частотой генерации в диапазоне 74÷76 ГГц и выходной мощностью 200 мВт.

Схема криогенных конструкций мишени приведена на рис. 1. В вакуумном кожухе криостата мишени размещены азотная (7) и гелиевая (9) емкости. Ко дну гелиевой емкости закреплена сверхпроводящая магнитная система, состоящая из двух катушек (12) и (16). Катушки закреплены на дюралевой проставке (15) и имеют свои собственные резервуары для жидкого гелия. Между собой и с гелиевой емкостью они соединены с помощью сильфонов (11) и (13). В сильфонах располагаются токовводы и вводы датчиков температуры и уровня жидкого гелия.

Для прохода пучка и выхода регистрируемых частиц в проставке (15) имеются четыре окна. Каждое окно обеспечивает углы доступа к мишени по 80° в горизонтальной плоскости и 23° в вертикальной.

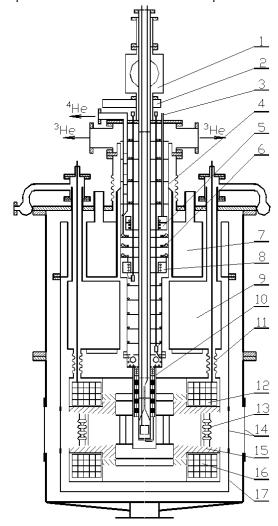
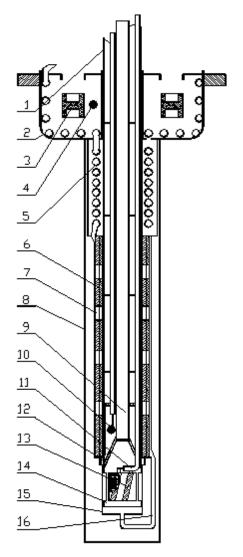



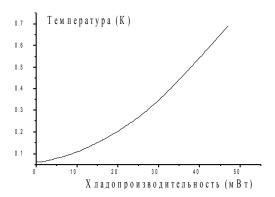
Рис. 1. Схема криогенных конструкций.

Все узлы мишени, находящиеся при температуре 4.2К и ниже окружены медным экраном (17), который имеет тепловой контакт с ванной для жидкого азота. Для уменьшения массы вещества на пути пучка и регистрируемых частиц окна в вакуумном кожухе и азотном экране закрыты тонкими фольгами (14). В центральной части криостата мишени находится

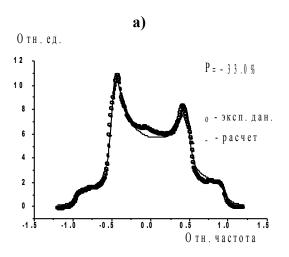
рефрижератор растворения ³Не в ⁴Не, состоящий из рефрижератора непрерывного потока ⁴He (4) и ступени растворения ³He в ⁴He (10). Рефрижератор непрерывного потока ⁴Не служит для охлаждения ³Не и его конденсации при температуре 1К. Из сосуда Дьюара ⁴Не по переливалке (3) подается в сепаратор (5) рефрижератора для разделения на жидкую и газообразную фазу. Из сепаратора жидкий ⁴He охлаждается в противоточном теплообменнике (6), дросселируется и поступает в испаритель ⁴He (8). испарителя И Откачиваемый ИЗ сепаратора газообразный ⁴Не охлаждает ³Не. Для быстрой (30-40 минут) смены рабочего вещества рефрижератор имеет шлюзовое устройство, состоящее из камеры шлюза (1) и разделительного клапана (2).

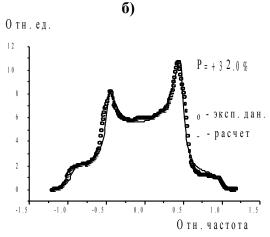
Ступень растворения 3 Не в 4 Не показана на рисунке 2.

Рис. 2. Схема ступени растворения ³Не в ⁴Не. Ступень растворения состоит из ванны испарения ³Не (2), находящейся при температуре 0.7 K, ванны растворения (15), соединенных непрерывным (5) и дискретным (6) теплообменниками. Все части ступени растворения окружены экраном (8),


находящимся в теплоконтакте с ванной испарения ³Не. Ванна испарения ³Не выполнена из меди в виде тороидальной чашки. В ней находятся распределенный нагреватель (3) мощностью 0.5 Вт и угольный терморезистор 220 Ом (4). Непрерывный теплообменник выполнен из 5- метровой тонкостенной нержавеющей трубки с наружным диаметром 2.5 мм, свернутой в цилиндрическую спираль диаметром 45 мм.

Дискретный теплообменник представляет собой тонкостенную нержавеющую трубку диамером 32 мм, на которую с внутренней и наружной стороны методом термодиффузии припечены слои пористой меди толщиной 1.5 мм. Для этого использовался медный порошок сферической формы диаметром, не превышающим 0.04 мм. Чтобы избежать большой теплопроводности вдоль теплообменника, с наружной и внутренней стороны в напеченном слое сделаны совпадающие по длине кольцевые проточки со вставленными в них фторпластовыми кольцами (7). Жидкая смесь газов с высокой концентрацией ³He подается в ванну растворения по трубке (16). Для прохода ³Не в резонатор, который является частью ванны растворения, в его нижней и верхней частях по периметру сделаны отверстия диаметром 0.5 мм.


В ванне растворения находится измерительная катушка (13) входного контура Q-метра системы измерения поляризации [9]. В измерительную катушку помещен контейнер ($20 \times 20 \times 20 \text{ мм}^3$) рабочим веществом. Контейнер изготовлен из фторпластовой пленки толщиной 0.02 мм. Для равномерной чувствительности к поляризации ядер во всем объеме вещества измерительная катушка выполнена из ленточного дюралевого проводника шириной 2 мм. СВЧ-мощность подается в ванну растворения по круглому волноводу (9), который с СВЧ-резонатором с помощью согласуется дюралевого конуса (12). Над конусом располагается угольный термометр 100 Ом (10). В качестве СВЧволновода используется тонкостенная трубка из нержавеющей стали с внутренним диаметром 9.5 мм. СВЧ-резонатор вместе с ЯМР-катушкой закреплены на подвижной тонкостенной трубке-штанге (1), с помощью которой можно производить смену рабочего вещества, не разогревая рефрижератор выше 1 K. Внутри штанги проходят волновод (9), коаксиальный кабель (11), соединяющий измерительную катушку со входом О-метра и выводы угольного термометра. С целью уменьшения теплопритока штанга и волновод вакуумированы. В нижней части волновод закрыт вакуумным СВЧокном из поликора с толщиной, соответствующей половине длины СВЧ-волны в нем.


Для работы в интенсивных пучках нами использовался режим непрерывной динамической накачки поляризации при температурах 0.2÷0.3К. Рефрижератор оптимизировался на максимальную хладопроизводительность. На рис. 3 представлена нагрузочная характеристика рефрижератора. Для

поддержания максимальной циркуляции гелия мощность нагревателя в ванне испарения ³Не устанавливалась равной 240 мВт.

Рис. 3. Нагрузочная характеристика рефрижератора.

Рис. 4. Спектр ЯМР поглощения, соответствующий: а) отрицательной поляризации, б) положительной поляризации.

В качестве рабочего вещества поляризованной мишени дейтронов использовался облученный аммиак. Гранулы размером 1 - 2 мм получались при дроблении медленно замороженного аммиака.

Парамагнитные ценры создавались в аммиаке при облучении его на электронном пучке с энергией 500 МэВ. Облучение проводилось в среде жидкого аргона при Т=90 К [8]. Полное число электронов, прошедших через вещество, измерялось с помощью монитора вторичной эмиссии. Для равномерного облучения применялось сканирование пучка по всему объему контейнера с гранулами ND₃. Доза облучения составляла 10¹⁷ е⁻/см². Наработка рабочего вещества проводилась предварительно. После облучения рабочее вещество хранилось в сосуде с жидким азотом.

Величина поляризации дейтронов равна $p = (1-R^2)/(1+R+R^2)$,

отношение интенсивностей (площадей) дейтронной спиновой переходов в системе. Поляризация вычислялась из разложения линии ЯМР - спектра дейтронов, полученного в результате 400 накоплений. Основным источни-ком ошибок является точность вычисления пло-щадей. На рис. 4 представлены спектры дейтронного ЯМРпоглощения, соответствующие $p = +32.0\pm1.2\%$ $p = -33.0 \pm 1.2\%$.

Нами проведены экспериментальные исследования T-асимметрии сечения фоторождения π^- мезонов на поляризованных нейтронах в области первого пионнуклонного резонанса. В эксперименте использовался пучок тормозных γ - квантов линейного ускорителя электронов ННЦ ХФТИ ЛУЭ 2000.

Методика экспериментов по измерению Т-асимметрии сечения в реакциях фоторождения пионов на нуклонах основана на зависимости дифференциального сечения от величины поляризации нуклонов мишени [9]:

$$d\sigma/d\Omega = (d\sigma^0/d\Omega) \cdot (1 + p_v \cdot T)$$

где $d\sigma^0/d\Omega$ - дифференциальное поперечное сече—ние реакции $\gamma N \to \pi N$ для неполяризованных частиц, Тасимметрия сечения фоторождения пио—нов неполяризованными фотонами на поляризо—ванных нуклонах, p_y - поляризация нуклонов мишени с направлением вектора поляризации перпендикулярно плоскости реакции.

Пучок у-квантов получался при прохождении электронов с энергией 500 МэВ через аморфную танталовую мишень толщиной б=0.1 мм. После коллиматоров и прохождения через дополнительный очищающий магнит он попадал на ПДМ. Для снижения электромагнитного фона вакуумная камера соединялась с фотонопроводом. Пионы регистрировались телескопом сцинтилляционных счетчиков, установленным В магнитном спектрометре. Для отделения фона рассеянных электронов использовался черенковский счетчик. Экспериментальный выход пионов можно записать как

$$N^{\downarrow} = N_0 (1 \pm p_v \cdot T) + N_{He} + N_N + N_{arr}$$

где N_0 - выход пионов, рожденных на нейтронах дейтерия в случае, когда поляризация нейтронов равна нулю; N_N - выход на нейтронах азота, входящего в состав аммиака; N_{He} - выход на нейтронах гелия, которым охлаждается рабочее вещество; N_{an} - выход на нейтронах, входящих в состав материала аппендикса. T - асимметрия сечения связана с экспериментально измеряемыми величинами следующим образом:

$$T = (1/\kappa) \cdot \{ (N - N^{\downarrow}) / [p N^{\downarrow} + p^{\downarrow} N - (p^{-} + p^{\downarrow}) (N_{He} + N_{arr}) \},$$

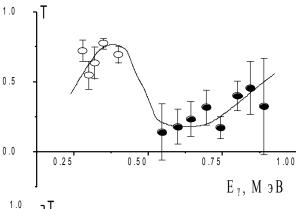
где N и N^{\downarrow} - выходы пионов для случаев, когда вектор поляризации нейтронов мишени направлен по и против вектора нормали к плоскости реакции, соответственно, р и p^{\downarrow} - величины этой поляризации, κ - фактор, учитывающий вклад пионов, рожденных на нейтронах азота, входящих в состав аммиака. Фактор κ определяется из следующего соотношения:

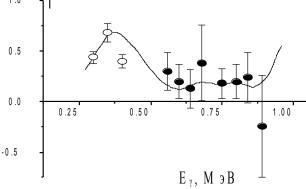
$$\kappa = N_D/N_{am}$$
,

где N_D - выход пионов на нейтронах дейтерия, входящего в состав аммиака, $N_{\text{ам}}$ -выход пионов на всех нейтронах аммиака:

$$N_{D} = (1/2) \cdot (N + N^{\downarrow}) - N_{He} - N_{N} - N_{arr} ,$$

$$N_{am} = (1/2) \cdot (N + N^{\downarrow}) - N_{He} - N_{arr} .$$


Для определения выходов N_{He} , N_{N} , N_{an} были проведены дополнительные измерения на гелии, азоте и пустом аппендиксе. Для всей кинематической области $\kappa = 0.25 \div 0.35$. Полученные результаты энергетической зависимости T - асимметрии сечения для углов θ^*_{π} вылета π^- - мезонов 90° и 120° в лабораторной системе приведены в таблице. Указанные ошибки статистические.


$\Theta^*_{\ \pi}$	90^{0}	120°
Е _у , МэВ		
280	0.721±0.077	П
300	0.547±0.102	0.436±0.058
320	0.633±0.115	П
350	0.772±0.038	0.683±0.091
400	0.691±0.067	0.401±0.067

На рис. 5,6 наши результаты (светлые точки) представлены совместно с данными из работы [10] (черные точки). Сплошная линия - результат анализа [11].

Измеренные значения Т-асимметрии сечения хорошо согласуются с результатами анализа [11].

Рис. 5. Энергетическая зависимость **T**- асимметрии сечения реакции $\gamma n \to \pi \bar{n}$ для $\theta^*_{\pi} = 90^{\circ}$.

Рис. 6. То же, что и на рис. 5, но для $\theta_{\pi}^*=120^{\circ}$.

Литература

- 1. Get'man V.A. et al. Nucl. Phys. <u>B188</u>, 397(1981).
- 2. Belyaev A.A. et al. Nucl. Phys. <u>B213</u>, 201(1982).
- **3.** Беляев А.А. и др. ЯФ 40, 133(1984).
- **4.** Беляев А.А. и др. Препринт ХФТИ 85-9. -М. ЦНИИатоминформ, 1985.- 18c.
- **5.** Агранович В.Л. и др. ВАНТ, сер.:Яд.-физ. исследования. Вып. 8(8), 5(1989).
- **6.** Belyaev A.A. et al. 9-th Intern. Symp. on high energy spin phys. Held at Bonn, FRG, 6-15 Sep., 1990, Conf. Proc. v.2, p.253-256.
- Belyaev A.A. et al. Conf-880983-.AIP Conf. Proc. ISSN 0094-243X. APCPC.(5 may 1989). v.187(2) p.1346.[8 Intern. Symp. on high energy spin phys. Minneapolis, MN(USA).12-17 Sep. 1988].
- **8.** Belyaev A.A. et al., 9-th Intern. Symp. on high energy spin phys. Held at Bonn, FRG, 6-15 Sep., 1990, Conf. Proc. v.2, p.257.
- **9.** Worden R. Nucl. Phys. <u>B37</u>, 253(1972).
- 10. Menze D et al. Preprint Bonn Univ., 7-1, 1977.
- **11.** Arai I. et al. Nucl. Phys. <u>B194</u>, 251(1982).

Статья поступила: в редакцию 25 мая 1998 г. , в издательство 3 июня 1998 г.