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The Lemmlein algorithm assigns a cyclic interaction of a mathematical point with other (n+1) points of the n - 
dimensional Euclidean space. In this paper generalization A of the Lemmlein algorithm for an arbitrary number of 
points m situated in the n - dimensional Riemann space is proposed. Algorithm A generates a Markovian chain 
consisting  of  the  finite  number  of  combinatorially  different  strongly  convergent  attractors.  Algorithm  A  is 
generalized to describe the interaction of mass points, e.g., the motion of electrons in the real crystal medium. The 
strong convergence of the attractors provides stability of the electron trajectories in the vicinity of an attractor in the 
unit cell of the crystal after electron scattering at the crystal defects.

PACS: 12.20.-m, 13.40.-f, 13.60-Hb, 13.88.+e

1. INTRODUCTION
Some models of the motion of charged particles in 

the field witha non-uniform potential were considered in 
[1].  This  permits  theauthor  to  do  only  with  a  brief 
Introduction,  where  severalfurther  comments  are 
proposed.

The  studies  of  equipotential  surfaces  can  also 
include [2] the closed smooth convex surface inside the 
tetrahedron which is incontact with all the tetrahedron 
faces.

Models  similar  to  those  of  elastic  reflection  [3,4] 
were used tosimulate conductivity in the normal metal - 
superconductor system [5,6].

The  basic  criterion  of  the  model  value  [1]  is  the 
stability  of  the  motion  of  charged  particles,  i.e.  the 
conditions  under  which  small  changes  in  the  particle 
paths cause small alterations in the initial parameters of 
the  model.  The  computer  region  of  model  estimation 
[3,4] contains everywhere a dense set of directions with 
the  fractal  path  measure  over  unity,  which  indicates 
possible instability of the paths.

The aim of this study is to supplement the models of 
Group  [3]  with an example  of  a  model  in  which the 
region of parameter estimation does not contain points 
of instability.

2. THEORY
Let us accommodate the finite number of points k(x) 

(  k  is  the  point  number,  x  is  the  vector  of  the  point 
coordinates) in a compact region of the n-dimensional 
Riemann space. Similarly to the algorithm in [7], we can 
estimate the path of a point in respect to the rest of the 
points  of  the  set  k(x).  For  this  purpose  we  employ 
Procedure A.

1. Let us mark one point of the set k(x) as ¹ 1. The 
rest of the points are numerated with randomly ascribed 

natural  numbers.The  point  numbers  can  then  be 
normalized so that the highest number is max(k).

2. Let us connect point ¹1 of the set k(x) with point 
¹2 with the shortest line and mark the point m(x) which 
divides the shortest line in the preassigned proportion P 
= [1(x) - 2(x)]/[2(x) - m(x)].

3. Let us connect the i-th point m(x) of the shortest 
line with the (i+2)th point of the set k(x) and mark the 
point  in  the  shortest  line  which  divides  it  in  the 
proportion P. This is the (i+1)th point of the set m(x).

4. If in item 3 all points of the set k(x) are exhausted, 
Procedure A continues item 3 starting with point ¹1. 

5.  Going  over  to  item 1  proceeds  either  through 
performing an arbitrary finite number of steps in item 3 
or  when  the  points  m(x)  reach  the  vicinity  of  their 
attractor [8].

Theorem 1. With  any  arbitrarily  large  number  of 
cycles  in  item  3  of  Procedure  A  and  fixed  P  non-
belonging to the section [-2,0],  the sequence of points 
m(x)  permits  one  and  only  one  division  into  M(k) 
subsequences  such  that  each  M(x)  subsequence 
converges to its limit point in the space metric.

With each j-th return of Procedure A to item 1 a new 
set  of  sequences  M(k,j)  is  practically formed with its 
own limit points. Let us connect the limit points with the 
shortest  lines  MA(k,j).  By  definition  [8,p.139],  the 
polygonal line MA(k,j) is an attractor.

Theorem 2. The sequence M(k,j), where j = 1,..., is a 
Markovian chain. For each fixed P non-belonging to the 
section  [-2,0]  the  number  of  metrically  and 
combinatorically  different  attractors  MA(k,j)  is  upper 
bounded  with  the  number  of  transpositions  of  the 
elements in the set k(x).

3. RESULTS
Let us consider a geometric model of a crystal in the 

Euclidean  space.  There  are  some  directions  in  the 
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crystal  which  form  channels  [1]  free  of  the  crystal 
atoms.  Let  us  send  the  particle  f(i)  to  one  of  these 
directions.  Its  velocity  V  is  pre-assigned  so  that  the 
particle could move over the distance  L >> a, where a is 
the  crystal  lattice  parameter.  We pre-assign algorithm 
A3 of the interaction of the particle f(i) with the crystal 
atoms.The algorithm consists of two components: (i) the 
motion  along  the  channel  axis  and  (ii)  Procedure  A 
applied in item 1 to the real order of numeration of the 
atoms in the channel when the particle  f(i)  is moving 
along  the  channel.  The  reality  of  the  order  of  atom 
numeration implies that the next number is assigned to 
the  atom  whose  orthogonal  projection  onto  the 
symmetry axis of the channel is next in the sequence. 
We put a screen at the end of the path L - the plane E 
which records  the  coordinates  of  the  particle  passing 
through it f(i). According to the Theorem 1, the path of 
the particle f(i)  forms an attractor and is stable for all 
fixed P values in the region of P estimation. According 
to Theorem 2, all particles f(i) having the parameter P 
travel the distance L and cross the plane E within one 
small vicinity.

Let us consider a beam of particles f(i) directed into 
the crystal channel. Assume that the particles f(i) do not 
interact  with  one  another.  Then,  according  to 
Theorem 1,  each  particle  trajectory  is  stable.  As 
Theorem 2 suggests, if P(i) if the same for all particles, 
the beam of particles will become focused in the vicinity 
of one point of the plane E. If the distribution of P(j) 
among the set of particles f(i) is given, then, according 
to Theorem 2, j vicinities of the points corresponding to 
j different P(j)-values will be marked in the plane E.

Since Algorithm A is determined and valid for the 
non-zero curvature space, it is also valid to describe the 
motion  of  particles  f(i)  through  a  bent  crystal.  The 
model bent crystal can be specified in a limited region 
of the hypersphere of the four-dimensional space with a 
given curvature radius and the dimensions  of the region 
ensuring  uniqueness  of  the  shortest  line  in  it.  The 
inference  in  this  case  is  similar  to  that  for  a  straight 
crystal.

Assume that  the model  crystal  has a  defect  in  the 
given  channel.  Because  of  the  fast  convergence  of 
Algorithm A,  the  particles  f(i)  respond  to  the  defect 
actively. Here there exists an alternative for the further 
path  of  the  particle  f(i)  -  either  it  restores  fast  and 
performs finite mothion or it chooses one of the possible 
neighboring channels.

Thus,  the  regular  motion  of  each separate  particle 
f(i) in the crystal may look like irregular in the f(i) beam 
for two reasons:

− the P(j) values one not equal among the set of f(i) 
particles;

− the crystal has defects.

4. CONCLUSION
Let us come back once again to Algorithm A and the 

conditions of  Theorems 1 and 2,  which say that P(j) 
does  not  belong to  the  interval  [-2,0].  Let  P  increase 
unrestrictedly tending to infinity. We then can find a P-
value at which Algorithm A3 transforms into the elastic 
scattering algorithm [2]. At P < -2 the path of particles 
f(i) will run beyond one channel.

Algorithm A3 can be applied to quasi-crystals and 
amorphous structures, but this falls outside the scope of 
this paper.
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