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It is shown that in the inverted system of nonrelativistic electrons in rarefied magnetized plasma, when electron 
density on high Landau levels exceed some critical value defined by its transversal energy, magnetic field and tem-
perature, the nonequilibrium phase transition occures with domain ordering of mutual orientations of interacting ro-
tated dipoles. The intensity of cyclotron radiation of each domain in ordered phase becomes proportional to square 
of electron number in it.
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1. INTRODUCTION
The phenomenon of superradiance (SR) was consid-

ered first in the famous work by Dicke [1] on the exam-
ple of two-level model. Now rather significant literature 
(see for example, reviews [2,3,4]) is devoted to it, but, 
as it is marked by many authors, a theme is far from be-
ing exhausted,  many interesting and physically impor-
tant questions and situations remain not investigated.

In the present  work the question of  possbility and 
conditions  of  SR formation  in  the  inverted  system of 
electrons on high Landau levels (1) with 1> >n  are in-
vestigated 
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As it is known, for generation of the induced coher-
ent radiation in systems like masers the equidistancy of 
levels is an obstacle because of specific competition of 
radiation and absorption processes in this case. In a case 
of SR we deal not with induced, but with spontaneous 
radiation and here, as we shall see, equidistancy appears 
of  advantage.  This  is,  first,  because the SR regime is 
usually realized in open finite systems without mirrors 
when  radiation  leaves  active  volume  of  generation 
quickly enough, practically having no time to get in ab-
sorption  regime [3].  Second,  in  this  case  all  inverted 
electrons, as a rule, occupying not one level, but some 
significant interval of high levels )1( > >∆> >∆ nnn , be-
cause  of  equidistancy,  radiate  the  same mode on  fre-
quency (2), and also, as we shall see, in the same rate, 
do not depend on initial energy.

The phenomenon of SR arises when in "coherence 
domains", with the sizes 0R  smaller than a wave length
λ  all  0N  radiating dipoles gradually, during radiation, 
are aligned in one direction by a dipole - dipole interac-
tion between them in "a near zone" λ< <0R , - so that in 
result the total dipole of the domain D


 appears in 0N  

times larger than an elementary dipole d


. Therefore the 
intensity of collective dipole radiation becomes proportional 

to 2
0N  - as opposite to 0N  in the case of radiation of uncor-

related dipoles. 
Transition in such a correlated polarized state is sim-

ilar  to  phase  transition  in  magnetics  or  ferroelectrics, 
and for its description it is convenient to use the Weiss 
method of mean self-consistent field [6]. Let's note, that 
the  considered  phase  transition  is  nonequilibrium and 
has  all  features  of  the  self-organizing phenomenon in 
dissipative systems.

2. CYCLOTRON SUPERRADIATION ON 
LANDAU LEVELS

Levels  (1)  at  high  n correspond to  quantum states 
which wave functions are located near the classical Lar-
mor orbits with radiuses HL Vr ω/⊥= .

In this connection we can proceed to (quasi-) classi-
cal  description  of  such  states  and  transitions  between 
them. In a classical limit in сoordinate system, in which 
longitudinal movement is excluded, these orbits are giv-
en as

}0),sin(),{cos()( αωαω ++=⊥ ttrtr L


, (3)
where in braces the cartesian components of the vector 

⊥r


 are written out. In other words, quantum states are set 
by narrow enough wave packages  at  "Landau orbits" 
which represent the certain superpositions of the Landau 
wave functions [5]. 

Being inverted at the beginning on high levels, elec-
trons start to fall downwards on stear steps (1), radiating 
quants with frequency (2). Differential (on corners) and 
integral intensities of dipole radiation of one electron in 
a classical limit are described by the known formulas [7]
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From (5) the following evolution the law of electron 
energy follows
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)/exp()0()( τtEtE −= ⊥⊥ . (7)
We see that time of radiation τ  does not depend on

⊥E , i.e. electrons with various (within the limits of dis-
persion  )0()0( ⊥⊥ < <∆ EE )  initial  energies  will  fall 
downwards at the same rate. It is easy to see, that at the 
same rate the dispersion of energy will decrease also

)/exp()0()( τtEtE −∆=∆ ⊥⊥ , (8)
so that the relation is true

1)(/)( < <=∆ ⊥⊥ ConsttEtE . (9)
This  allows judging  about  evolution  of  the  whole 

collective of electrons by evolution of their mean energy 
and other mean quantities. Therefore, for simplicity, we 
shall  understand  further  under  the  symbols 

LerdVE =⊥⊥ 0,, and etc., their average values over en-
semble of inverted electrons.

It is possible to divide the total volumeV , occupied 
by N inverted electrons on subvolumes cohV , or "coher-

ence areas", which sizes  0R  are smaller in comparison 
with radiated wave length λ  but are greater in compari-
son with radiuses of Larmor orbits, describing the sizes 
of elementary dipoles

λ< << < 0RrL . (10)
Thus, a big enough number of 0N  radiating dipoles 

will be in volume cohV
10 > >=> >= cohee VnNNVn             (11)

Let us consider a total dipole of such subsystem 
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Similarly to (4) for one electron, collective dipole radia-
tion of our subsystem will be described by the formula 
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By substituting here (12) and (3) and averaging over 
the period HT ωπ /2= , we have
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The  multiplier  2/)1( 2
zn+ reflects  the  anisotropy 

properties  of  dipole  radiation  of  nonrelativistic  elec-
trons. The second member in square brackets describes 
the correlation effects connected with mutual aligning of 
dipoles. If correlations are not present, i.e. contributions 
of all )cos( ji αα − are mutually compensated and in the 
sum give zero, then in (14) works the first member only 
that corresponds to the total radiation of  0N  indepen-
dent elementary dipoles.

In  the  case  of  full  correlation,  when  all 
1)cos( =− ji αα , the formula (14) gives
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i.e. in comparison with radiation of  0N  noncorrelative 

dipoles the intensity grows in 0N  times. This is just SR 
[1]. 

Radiation time of such correlated dipoles radiating 
coherently  will  decrease  in  0N  times  in  comparison 
with time (6) 

0/ Ncoh ττ =                         (16)
Really, it is possible to expect only partial positive 

correlation of phases, i.e. partial aligning of all dipoles, 
when the average over ensemble value of phase differ-
ence  cos is  positive.  Having  replaced  in  (14)  all 

)cos( ji αα −  by their average value, we receive 
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In this case the intensity of coherent radiation is pro-
portional to >< αcos2

0N .
We proceed now to consideration of the mechanism 

of spontaneous aligning of the dipoles giving rise to SR 
regime. 

3. POLARIZATION PHASE TRANSITION IN 
THE “COHERENCE DOMAINS”

To solve the problem of the phase transition we ap-
ply here the Weiss method of self-consistent mean field 
[6]  approved in  the theory of  spontaneous magnetiza-
tion. Let us consider the potential energy of trial dipole 
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 with the electric field  ),( 0 trE


, created at the 
point 0r


by the other )1( 0 −N dipoles 
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All dipoles rotate under the law (3) and radiate and 

their electric field is not static, but it also rotates with 
frequency Hω . Therefore, the use of expression (19) for 
a field )(tE


 demands explanation. The matter is that the 

conditions  (10),  determining  the  coherence  volume, 
mean that various dipoles of the domain are in the so-
called “near zone”  )( 0 λ< <R relativly to one another, 
where the main member in decomposition of  retarded 
potentials and fields over degrees of small parameters 

)/( 0RrL and  )/( λLr  appears  just  in  expression  (19) 
(see on this subject, for example, [7]). 

Averaging (18) over the rotation period, we notice, 
that points  0r


and  jr


 characterize not instant positions 

of rotating electrons, but positions of the motionless ro-
tation centres and consequently do not depend on time. 
Having substituted (19) to (18) and averaging over the 
period, we receive 
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where  jjjzL rrzznerd


−−== 000 /)(, .  It  is possible 
to replace the sum (20)  approximately by the integral 
over coordinates in limits of "coherence volume" with 
an  obvious  measure jedVn ,  representing  an  average 
number  of  dipoles  in  the  element  of  volume 

)( jj rddV


≡  in a vicinity of a point jr


. But before writ-
ing out this integral, we shall notice, that because the po-
sition of our trial  dipole should not be allocated,  it  is 
necessary to average (20) over this parameter, i.e. to en-
ter  additional  integration cohVrd /)( 0


.  Besides,  likewise 

an  average  field  method,  we  replace  )cos( 0 jαα − in 
(20) by its value averaged over ensemble. After all these 
averagings we get the expression
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By  the  replacement  of  variables 
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Aligning of dipoles over directions is energetically 
favourable by virtue of increasing, thus, of the negative 
contribution to potential energy <  U  >. Therefore,  the 
correlations  necessary for  that  will  occur  only in  that 
part of coherence volume where the area of integration 
over relative coordinates satisfies the condition

03 22 >− zr ,                       (23)
i.e. in the area like a flattened out circular cylinder. We 
will name this part of coherence area a "coherence do-
main" or otherwise a "domain of self-polarization".  In 
the similar next domain the direction of an average vec-
tor of polarization should be close to opposite to mini-
mize in system as a whole the positive energy of polar-
ization electric field. It is known that by virtue of the 
similar reason the macroscopical volumes of magnetics 
and  ferroelectrics  are  broken  into  domains  also.  Do-
mains are divided by transition regions ("domain walls") 
within which limits the turn of polarization vector occur. 

We return now to an estimation of integral in (22) 
with restriction (23). It is convenient, obviously, to cal-
culate it in cylindrical coordinates, in which

023, 2222222 >−=−+= zzrzr ρρ .     (24)
We limit the integration over ρ  by ),( 21 ρρ , so it is 

easy to show that
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We will consider now a question about the minimal 
and  maximal  limits  ),( 21 ρρ over  relative  coordinate 

2
21

2
21 )()( yyxx −+−=ρ in  a  plane  between  two 

dipoles  in the coherence domain.  We remind that  the 

characteristic sizes of initial "coherence volume" were 
determined by conditions (11): λ< << < 0RrL . The in-
equality (24) means that in relative coordinates "the co-
herence domain" has the form of flattened out circular 
cylinder with radius 02R . Hence, the maximal value of 
ρ  is  02 2R=ρ ,  the  minimal  value  should  be  taken 
about double Larmor radius Lr2~1ρ , because at small-
er distances between centres of dipoles the interaction 
between pair of electrons does not carry dipole character 
any more and it  is  impossible to use dipole formulas. 
Thus, we can write )/ln()/ln( 012 LrR≈ρρ . As the re-
lation  LrR /0  enters under a mark of the logarithm the 
result is poorly sensitive to exact value of this relation. 
Thus, taking into account a condition λ< <0R  we can 
substitute here 0R  by the quantity of the order of 10/λ . 
Taking into account, that HL Vr ω/⊥= and cH πλ ω 2= , 
we can write 
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With the account of (26) the expression (25) takes the 
following form

><





−> =<

⊥
απ cos

5
ln

33
2 2

0

22

end
E

mcU .    (27)

To  find  the  >< αcos ,  we address  now to  Weiss 
method [6]. For this purpose at the beginning it is neces-
sary to consider the response of our system of rotating 
dipoles in plane (x,y) 

}0),sin(),{cos(0 jjj ttdd αωαω ++=
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        (28)
to the external homogeneous electric field 
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           (29)
rotating synchronously with dipoles. The potential ener-
gy of a dipole in this field, averaged on the period of ro-
tation, obviously, is 

)cos()()( 00 αα −−=⋅−= jeej EdtEtdU


,   (30)

thus it is seen, that the aligning of dipoles along the field 
with  radiation  of  released  energy  is  energetically 
favourable. The thermal fluctuations resist this tendency. 
They are realized in rarefied magnetized plasma mainly 
in the form of  plasma fluctuations  and Alfven waves. 
The distribution over the phase differences is given by 
Bolzman formula 
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with normalizing factor 
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where )(0 xI  is a modified Bessel function of a zero or-
der [8].  Average value of  >< αcos  is determined by 
the integral 
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where
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kTEdx e /0= (34)
So, the external field induces the nonzero correlator 

of a phase difference (33), i.e., otherwise, polarizes the 
system. A polarization measure is an average dipole mo-
ment of unit volume 

><= αcos0dnP e  .                (35)
Polarization generates an additional internal electric 

field 
PE p ⋅= ν  , (36)

where  ν  is  some dimensionless  parameter  which  we 
shall define later. The field pE , in turn, strengthens the 
polarization. This feedback effect will be taken into ac-
count,  if  in  (34)  we  replace  eE  by  the  sum 

PEEE epe ν+=+  that  corresponds  to  ideology  of 
self-consistent mean field by Weiss. As a result, we re-
ceive the nonlinear equation for polarization P 
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Excluding an external field, we receive "the equation 

of the self- consistency"
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We consider now a condition of existence of its non-

trivial  solution.  Having entered  a  variable  
kT

Pd
z

ν0= , 

we rewrite the equation (39) in the following form
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Function F (z) has asymptics [8]
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From (40) and (41) it follows that at large z the solution 
exists and corresponds to the maximal polarization 
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To  determine  threshold  value  of  electron  density, 
higher  of  which  there  is  a  nontrivial  solution  of  the 
equation (39), it is necessary to consider the asymptotic 
(42). Being limited by the first member, we receive from 
(40) 
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It follows from here, that the density en has a critical 
(threshold) value, if it satisfies the condition 
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at  ece nn ≥  a  nontrivial  domain  self-polarization  ap-
pears. 

To define the factor  ν ,  it is necessary to compare 
the expression for potential energy following from (35), 
(36) and (30) 

><−> =< αν cos2
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with the  expression  (27)  received  earlier.  Demanding 
equality between them, we receive 
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It is useful to express  2
0d  by energy ⊥E  and mag-

netic field H 
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As a  result,  the criterion of  occurrence of  domain 
self-polarization of the inverted electron system on high 
Landau levels, leading to SR, takes the form
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