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1. MASTER FORMULA 
Precise polarization measurements in both inclusive 

and elastic scattering are crucial for understanding the 
structure and fundamental properties of a nucleon.

One important component of the precise data analy-
sis is radiative effects which always accompany the pro-
cesses of electron scattering. The first calculation of ra-
diative corrections (RC) to polarized deep-inelastic scat-
tering (DIS) was done in [1,2] where the first order cor-
rection has been found.

In  present  work  we apply  method  of  the  electron 
structure function for calculation of RC. Within this ap-
proach DIS in one photon exchange approximation can 
be considered as the Drell-Yan process [3]. The corre-
sponding cross section with accounting of  RC can be 
written as an contraction of two electron structure func-
tions and the hard part of the cross section [4,5]. Tradi-
tionally these RC include main effects caused by loop 
corrections as well soft and hard collinear photons and 
e e+ − - pairs. But it was shown in [5] how one can im-
prove this method by inclusion also effects due to radia-
tion  of  one  non-collinear  photon.  The  corresponding 
procedure concludes in modification of the hard part of 
cross section that leads to exit beyond the leading ap-
proximation.

A straightforward calculation based on the quasi-real 
electron method [6] can be used to write cross section of 
DIS process 
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The reduced variables which define the hard cross sec-
tion in the integrand are
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The electron structure function D z L( , ) includes con-
tributions due to photon emission and pair production
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For the photon contribution into the structure func-

tion one can use iterative form
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The nonsinglet part of the structure function due to 
real and virtual pair production can be included in the it-
erative  form of  ( . )D z Lγ  by replacing  / 2Lα π  on  the 
right side of Eq. (3) with the effective electromagnetic 
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 that  is  (within the 

leading accuracy) the integral of the running electromag-
netic constant.

The lower limits of integration with respect to z1 and 
z2 in the master equation (2) can be obtained from the 
condition of existence of inelastic hadronic events which 
reads in terms of dimentionless variables as
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The matrix element squared of the considered pro-
cess in one photon exchange approximation is propor-
tional  to contraction of leptonic and hadronic tensors. 
The representation (2) reflects the properties of leptonic 
one. Therefore,  it  has universal nature and can be ap-
plied to processes with different final hadronic states. In 
particular, we can use the electron structure function ap-
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proach to compute RC to the elastic and deep-inelastic 
electron-proton scattering cross sections.

On the other hand, the straightforward calculation in 
the first order with respect to  α [1,2,6] and the recent 
calculation of the leptonic current tensor in the second 
order [7-10] for longitudinally polarized initial electron 
demonstrate that in the leading approximation spin-inde-
pendent and spin-dependent parts of this tensor are the 
same for so-called nonsinglet channel contribution. The 
latter corresponds to photon radiation and e+e--pairs pro-
duction  through single-photon mechanism. The  differ-
ence appears in the second order  due to possibility of 
pair  production  by  double-photon  mechanism  [10]. 
Therefore,  the representation (2),  being slightly modi-
fied, can be used for calculation of RC to cross sections 
of different processes with longitudinally polarized elec-
tron beam. 

In our recent work [11] we applied this method to 
compute RC to the ratio of the recoil proton polariza-
tions measured in CEBAF Jefferson Lab [12], where the 
proton  electric  form factor  Ge was  measured.  In  the 
present  work  we  use  the  electron  structure  function 
method for calculation of model-independent part of RC 
to  asymmetry in  scattering of  longitudinally polarized 
electrons on polarized protons at the level of per mile 
accuracy for elastic and deep-inelastic hadronic events.

The cross section of the scattering of the longitudi-
nally polarized electron by the proton with given longi-
tudinal (l) or transverse (t) polarization for both elastic 
and deep-inelastic events can be written as a sum of its 
spin-independent and spin-dependent parts

,
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where S is 4-vector of the target proton polarization and 
η is the product of the electron and proton polarization 
degrees. Herein after we assume η = 1.

The master equation (2) describes the RC to spin-in-
dependent part of the cross section on the right side of 
Eq. (5) and the corresponding equation for the spin-de-
pendent part reads
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The  representation  (6)  is  valid  if  radiation  of 
collinear particles does not lead to change polarization 
4-vectors. In general case it is not so [13] but in this pa-
per we will use just such polarizations which satisfy this 
conditions (see next Section) 

The asymmetry in elastic scattering and DIS process-
es is defined as the ratio
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therefore, RC to asymmetry requires the knowledge of 
RC to both spin-independent and spin-dependent parts.

2. THE LEADING APPROXIMATION
Within  the  leading  accuracy  (taking  into  account 

terms of the order (αL)n) the electron structure functions 
can be computed in all orders of the perturbation theory. 
In this approximation we have to take the Born cross 
section as hard part in integrands of master Eqs. (2), (6).

We express the Born cross section in terms of lep-
tonic and hadronic tensors as follows
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where α(Q2) is the runing electromagnetic constant that 
takes into account for the effects of vacuum polarization 
and 
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In Eqs. (8) we assume the proton and electron polariza-
tion degrees equal to unity. The proton structure func-
tions F1, F2 and g1, g2 depends on variables x′=-q2/2p1q, 
q2=(px-p)2. In Born approximation, x′ =x but they differ 
in general case, when radiation of photons and electron-
positron pairs are allowed.

It is convenient to express the 4-vector of proton po-
larization in terms of 4-momenta of particles in process 
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As  normalization  is  chosen,  the  elastic  limit  can  be 
reached by a simple substitution in hadronic tensor 
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where Gm and Ge are magnetic and electric proton form-
factors which depend on q2.

A simple calculation gives the spin-independent and 
spin-dependent parts of the cross section in the form
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Thus, within the leading accuracy, the radiatively cor-
rected  cross  section  of  the  process  (1)  is  defined  by 
Eq. (2) for its spin-independent piece with (10) as a hard 
cross section into integrand and by Eq. (6) with (11) or 
(12) as the hard part for its spin-dependent piece.

It is useful to extract the leading first order correc-
tion  to  the  Born  approximation  as  defined  by master 
Eqs. (2), (6). For this purpose we can use the structure 
function Dγ with 1L L→ −  and
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The straightforward calculation yields the following ex-
pressions
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Just the same contribution can be derived also for spin-
dependent part of the cross section.

3. DIS CROSS SECTION
BEYOND THE LEADING ACCURACY

To go beyond the leading accuracy we have to im-
prove the expressions for the hard part of the cross sec-
tions into master equations (2) and (6) to include effects 
caused by radiation of hard non-collinear photon.

To compute the improved hard cross section, one has 
to find the full first order correction in process (1) and 
subtract  from it  its  leading contribution,  which is  de-
fined by above expression, to get the double counting. 
Therefore, the improved hard part can be written as fol-
lows
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where ( )S Vdσ +  is a correction to cross section of process 
(1) virtual and soft photon emission and  dσH is the the 
cross section of radiative process
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The  virtual  and  soft  corrections  are  factorized  in  the 
same form for both polarized and unpolarized cases and 
can be written as
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To calculate the cross section of the radiative process, 
we use the corresponding leptonic tesor in the form 
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where  ω is the energy of radiated photon,  ( )H unLµ ν  is the 
leptonic tensor for unpolarized particles, see [14],  and 
we use the following notation for invariants 
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The result for unpolarised case reads [5]
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where the hadron structure functions 1F  and 2F  depend 
on xў  and 2q . Besides,
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The action of the operators t̂P  and ŝP  is defined as fol-
lows
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Note that quantity r1(r2) coinsides with z1(1/z2) for radia-
tion of a single collinear photon. The hard cross section 
(14) has neither collinear nor infrared singularities. The 
different terms on the right-hand side of Eq. (14) have 
singularities at  r=r1,  r=r2 and  γ=1. Singularities at first 
two points are collinear and at third one is unphysical 
that  arise  at  integration.  Collinear  singulariries  vanish 
due to action of operators t̂P  and ŝP  on the terms con-
taining N. The unphysical singulariry cancels because in 
the limiting case 1r →  we have
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The  corresponding  result  for  spin-dependent  hard 

cross section can be written by very similar form
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The polarized hard cross section (15) as well is free 

from any singularities. Note that radiation of photon at 
large angles by the initial and final electrons increases 
the region of variation for quantity  r in (14) and (15), 
because for collinear radiation  r1  <  r  <  r2 and now we 
have r- < r1 and r+ > r2. It may be important if the hadron 
structure functions are large in these additional regions.

4. HARD CROSS SECTION
FOR ELASTIC HADRONIC EVENTS

To describe the hard cross section for elastic hadron-
ic events we use the replacement given after formulae 
(9)  in expressions (14)  and (15).  For Born cross sec-
tions, which enter in these equations, see Eqs. (10-12). 

The function δ ( )1 − ′x  is used to perform the integration 
with respect to inelasticity z .

The final result for unpolarized case has the follow-
ing form (we do not introduce special notation for the 
elastic cross-section)
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The  Born  cross  section  on  the  right-hand  side  of 
Eq. (16) is defined as
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When writing this last equation we take into account that 
δ(1-x)=yδ(1-Q2/V).

The  spin-dependent  hard  cross  section  for  elastic 
hadronic events can be written in the very similar to (16) 
form
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Note  that  argument  of  electromagnetic  formfactors  in 
Eqs. (15) and (16) is 2Q r− .

The  Born cross  sections  on the  right-hand side  of 
Eq. (16) have the following form
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for longitudinally polarized of the target proton and
2 2 2

2 2 2 2
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d Q M y
dQ dy V M Q Q

y QG G G y
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τ δ
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+
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for transverse one. The argument of form factors in the 
last two formulae is –Q2

.

In this paper we consider model-independent QED 
radiative  correction  to  the  polarized  DIS  and  elastic 
electron-proton scattering. Our calculations are based on 
the electron structure function method which allows to 
write  both  the  spin-independent  and  spin-dependent 
parts of the cross section with accounting RC to the lep-
tonic  part  of  interaction  in  the  form  of  well-known 
Drell-Yan representation. The corresponding RC inclu-
des  explicitly the first  order  correction as well as  the 
leading-log  contribution  in  all  orders  of  perturbation 
theory and the main part  of  the  second order  next to 
leading-log one. Moreover, any model-dependent RC to 
the hadronic part of interaction can be included in our 
analytical result by insertion it as an additive part of the 
hard cross section in integrand in master equations.

To derive RC, we take into account radiation of pho-
tons and e+e--pairs  in  collinear  kinematics  which pro-
duces a large logarithm L in the radiation probability (in 
D-functions) and radiation of one non-collinear photon 
that enlarges the limits of variation of the hadron struc-
ture function arguments. It may be important that these 
functions are sharp enough. In this case the loss in radia-
tion probability (the loss of  L) can be compensated by 
the increase in the value of the hard cross section.

On the basis of our analytical result we constructed 
Fortran code ESFRAD (http://www.jlab.org/~aku/RC) and 
perform some numerical estimations [15] for kinemati-
cal  conditions  of  current  and  future  experiments.  We 

found two regions where the higher order radiative cor-
rections can be important. These are the traditional region 
of high y and the region around the pion threshold.
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