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The phenomenon of localized electrostatic wave has been investigated in magnetized plasma described by two-

dimensional Helmholtz equation. For its description, a formalism has been developed that, like WKB method, exploits 
smallness of wavelength before the space scale of media non-uniformity. Using the formalism, the localized waves in 
radially non-uniform plasma cylinder are studied. Besides localized waves with circular trajectories, the waves with 
elliptic trajectories are found and, their fields are calculated. These calculations are checked by the finite difference 
simulation. The coincidence between the results obtained with two different methods is noticeable. 
PACS: 52.35.Fp, 03.75.-b 
 

1. ELECTROSTATIC MODE  
 
     Many wave phenomena in different areas of physics 
are described by two-dimensional Helmholtz equation: 
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solutions correspond to propagating wave. One of these 
phenomena is the electrostatic wave in magnetized low-
density plasma. It is described by Poisson equation: 
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The dielectric tensor of cold low-density plasma in the 
steady magnetic field directed along z -axis 
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is diagonal. The only plasma dependent component of the 
tensor  could be negative. If potential has 
a Fourier harmonic dependence in 

22 /1 ωωε pez −=
z  direction 

)exp(),( zikyx zΦ=ϕ , Eq. (2) could be reduced to Eq. 
(1) with  

zzkG ε2−= .  (4) 
Quantity G  is positive when electron plasma frequency is 
higher than the wave frequency and the absolute value of 
the phase velocity component along magnetic field zk/ω  
exceeds electron thermal velocity.  
 

2. CYLINDRICAL LOCALIZED MODE  
 

The appearance of localized modes we illustrate by a 
simple one-dimensional example. We investigate Eq. (1) 
in cylindrical geometry ),( φr  with  and )(rGG =

)exp()( φimrmΦ=Φ . In this case Eq. (1) reduces to the 
following equation: 
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where . We consider the parabolic plasma 
density profile. For it  
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Quantity  is either negative at the interval D ),0( ar∈  or 
indefinite. The marginal case is when 

. In this case  is negative in the 

domain exempt the point 
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2/ar = . In this point 0=D  

and 0=
dr
dD . If  is slightly higher than , the 

narrow region with  around the point 

0G gG0

0>D 2/ar =  
appears. There a standing wave solution of Eq. (5) could 
exist. It could be found analytically using Teylor 
expansion of  near the point D 2/ar = . Neglecting the 

term m
d

r dr
Φ

1 , Eq. (5) could be reduced to the parabolic 

cylinder equation. The field of the first radial number 
eigenmode reads: 
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The corresponding eigenvalue of  is 0G
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eigenmode is strongly radially localized if  
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It is necessary to mention that condition (8) and the 
condition of smallness of the terms neglected in Eq. (5) 
coincide.  

The solution found corresponds to the localized in 
radial direction wave propagating along the cylindrical 
(guiding) surface 2/ar =  in z  direction and rotating 
in azimuthal direction. The existence of localized wave of 
such type is the result of appearance of two close cut-off 
points in radial direction. If right cut-off point is the result 
of plasma density decrease to the periphery of plasma 
column, the left one could be associated with the 
curvature of the cylindrical surface.  

 
3. FORMALISM FOR LOCALIZED MODE  

 
We assume that localized wave may exist in two-

dimensionally non-uniform plasma and has a guiding 
surface )(xfy = . We introduce coordinates u  across the 



surface and  along it. Below are the implicit formulas 
for them.  
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where 
dx
dff =′ . Coordinate  is the distance between 

point  and curve  with appropriate sign 
Coordinate  is the length of the segment of the curve 
between the initial point and the point (see Fig.1). 
This coordinate system is orthogonal. In it the guiding 
surface equation is . 
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Fig.1. Cross-section of the guiding surface (bold line) by 
the surface  (trajectory) and coordinates  and  0=z u sx

 
Let us introduce the characteristic length scale  and 

consider the short-wavelength case . The 
solution of Eq. (1) for the radial mode number n  we 
write in the following form: 
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Here ψ∇=k
r

, g  and ψ  are functions on  which vary 
in space with the characteristic space scale ,  is the 
polynomial in  order of  with coefficients 
dependent on v  excluding that one before the lowest 
degree. It should be even if  is odd and vice versa. As in 
the above example, we consider the case  in that 

. After substitution of the expression (12) to Eq. (1) 
terms of different orders appear. The largest one, order of 

 or , is , where  
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This term should be nullified at the guiding surface:  
0
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Since the wave is localized in the direction of  
coordinate we use Teylor expansion for . With account 
of Eq. (14) it reads: 
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The first term in (15) has order of  and, being the 
only term of such order, should be nullified too: 
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Eqs. (14, 16) are enough to determine the guiding surface 
and value of k  on it 

00 =
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u
kk . They used for this 

purpose in paper [1] directly. Using them and the fact that 
the wave vector 0k

r
 is tangent to the trajectory, the cut of 

the guiding surface by the plane , we obtain the 
following differential equations for the trajectory:  
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The equations for g  and ψ  could be found when the 
remainder terms of Eq. (1) order of  are taken into 
account:  
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The localized wave exists if the term 
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is negative. If this term does not depend on τ  there is 
solution of this equation with  and 0=g& 0Im =g . As it 
follows from Eq. (20), purely real g  provides corrections 

to the phase, but not to the amplitude. If 
0
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with τ , real part of g  and the wave channel width 
change. The variation of  causes the appearance of 
the imaginary part of 

gRe
g . Its presence in Eq. (20) provides 

subsequent change of the wave amplitude. 
The remainder terms in Eq. (1) are order of  and 

. They are disregarded. Therefore, the error in the 
solution is proportional to . This error has higher 
order than for WKB solutions for those the error is 
proportional to .  
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4. TWO-DIMENSIONAL LOCALIZED MODES 
 

We use the formalism presented above for studying 
the electrostatic localized waves in azimuthally symmetric 
plasma cylinder with G  given by expression (6). In this 
simple case the equations for trajectory (17) and (18) are 
solvable analytically. The expression for particular set of 
trajectories is the following: 
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Other trajectories could be produced by rotation of these 
ones around z -axis. The trajectories are elliptic. In the 
case 2/0 ar =  the trajectory is round. In this case the 
results of second section could be fully reproduced within 
the approach developed.  

55 



To check the analytical solutions we use finite 
difference modeling of Eq. (1). For it a boundary problem 
should be formulated. We choose  half-space as the 
domain. At  and  we specify the value of 

0>x
0=x 0<y Φ  

that is given by our analytical solution. At 0=x  and 
 at the expected wave field location we use the 

boundary condition for traveling wave 
0>y
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, where the values of  are also 

taken from analytical solution.  
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Fig.2. Contours of the module of wave field Φ  for 

,  and  cma 8= cmr 5.60 =
22

0 106 −⋅= cmG
 

We close boundary of the domain far from the expected 
wave location so that the character of boundary conditions 
there influences small enough on the numerical solution. 
The result of calculation for ,  and 

 at the mesh containing 200000 points is 
given in Fig.2. The figure showing the wave amplitude 
relates both to analytical and numerical calculations 

because the difference between them is not visible. Only 
small difference is observed also for the phase of the 
wave.  

cma 8= cmr 5.60 =
22

0 106 −⋅= cmG

CONCLUSIONS 
We have investigated the interesting phenomenon of 

localized wave in the media described by two-
dimensional Helmholtz equation. One of such media 
could be magnetized low-density plasma.  

We have developed a formalism that, like WKB 
method, exploits smallness of wavelength before the 
space scale of media non-uniformity. This formalism 
allows one to calculate the distribution of the wave field 
in media with arbitrary two-dimensional continuous non-
uniformity. The accuracy of it is less than that one of 
WKB approximation. It is proportional to  while the 
accuracy of WKB is proportional to . 
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Using the formalism, the localized waves in radially 
non-uniform plasma cylinder are studied. Besides 
localized waves with circular trajectories, the waves with 
elliptic trajectories are found and, their fields are 
calculated. These calculations are checked by the finite 
difference simulation. The coincidence between the 
calculation results is noticable.  
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ЛОКАЛИЗОВАННЫЕ ЭЛЕКТРОСТАТИЧЕСКИЕ ВОЛНЫ В ДВУМЕРНО НЕОДНОРОДНОЙ 

ЗАМАГНИЧЕННОЙ ПЛАЗМЕ  

В.Е. Моисеенко 

Исследована локализованная электростатическая волна в замагниченной плазме, описываемая двумерным 
уравнением Гельмгольца. Для ее описания разработан формализм, использующий, как и приближение ВКБ, 
малость длины волны по сравнению с пространственным масштабом неоднородности среды. Разработанный 
формализм использован для изучения локализованных волн в радиально неоднородном плазменном цилиндре. 
Кроме волн с круговыми траекториями, найдены волны с траекториями в виде эллипсов и рассчитаны их поля. 
Эти расчеты верифицированы с помощью конечно-разностного моделирования.  

 
ЛОКАЛІЗОВАНІ ЕЛЕКТРОСТАТИЧНІ ХВИЛІ В ДВОВИМІРНО НЕОДНОРІДНІЙ ЗАМАГНІЧЕНІЙ 

ПЛАЗМІ  

В.Є. Моісеєнко 

Досліджено локалізовану електростатична хвилю в замагніченій плазмі, що описується двовимірним 
рівнянням Гельмгольца. Щодо її описання розроблено формалізм, який використовує, як і метод ВКБ, малість 
довжини хвилі в порівнянні з просторовим масштабом неоднорідності середовища. Формалізм застосовано до 
вивчення локалізованих хвиль в радіально неоднорідному плазмовому циліндрі. Окрім хвиль з кільцевими 
траєкторіями, знайдено хвилі з траєкторіями у вигляді еліпсів та розраховані їхні поля. Ці розрахунки 
верифіковані за допомогою сіткового моделювання.  


