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The phenomenon of localized electrostatic wave has been investigated in magnetized plasma described by two-
dimensional Helmholtz equation. For its description, a formalism has been developed that, like WKB method, exploits
smallness of wavelength before the space scale of media non-uniformity. Using the formalism, the localized waves in
radially non-uniform plasma cylinder are studied. Besides localized waves with circular trajectories, the waves with
elliptic trajectories are found and, their fields are calculated. These calculations are checked by the finite difference
simulation. The coincidence between the results obtained with two different methods is noticeable.
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1. ELECTROSTATIC MODE

Many wave phenomena in different areas of physics
are described by two-dimensional Helmholtz equation:
AD +G(X,y)P =0, (1)
2 2
where A =—+—. In the regions where ReG >0 its
ox° oy

solutions correspond to propagating wave. One of these
phenomena is the electrostatic wave in magnetized low-
density plasma. It is described by Poisson equation:

V-£-Vp=0. 2)
The dielectric tensor of cold low-density plasma in the
steady magnetic field directed along z -axis
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E=|0 1 0 (3)
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is diagonal. The only plasma dependent component of the
tensor &, =1—w,, /” could be negative. If potential has
a Fourier harmonic dependence in z direction
@ =D(X,y)exp(ik,z), Eq. (2) could be reduced to Eq.
(1) with

G=-kle,. 4
Quantity G is positive when electron plasma frequency is

higher than the wave frequency and the absolute value of
the phase velocity component along magnetic field w/K,

exceeds electron thermal velocity.
2. CYLINDRICAL LOCALIZED MODE

The appearance of localized modes we illustrate by a
simple one-dimensional example. We investigate Eq. (1)
in cylindrical geometry (r,¢) with G=G(r) and
O =0, (r)exp(img). In this case Eq. (1) reduces to the
following equation:

14,94 ‘pa_ -0 )
rdr dr " no
where D =G —m®/r®. We consider the parabolic plasma
density profile. For it

G=G,(1-r?/a?). (6)

Quantity D is either negative at the interval r € (0,a) or
The marginal
G, =G,, =4m?/a’. In this case D is negative in the

indefinite. case is when

domain exempt the point r =a/ V2 . In this point D=0

and (jj—D:O. If G, is slightly higher than G
r

0g» the
narrow region with D >0 around the point r = a/\2
appears. There a standing wave solution of Eq. (5) could
exist. It could be found analytically using Teylor

expansion of D near the point r =a/ V2. Neglecting the
1 .

term —difbm , Eq. (5) could be reduced to the parabolic
rdr

cylinder equation. The field of the first radial number
eigenmode reads:

O, = expl—@z,bwaz } )

corresponding
~Am|(m|+1)
a
eigenmode is strongly radially localized if

{Gpia® >>1 or [m|>>1. ®)

It is necessary to mention that condition (8) and the
condition of smallness of the terms neglected in Eq. (5)
coincide.

The solution found corresponds to the localized in
radial direction wave propagating along the cylindrical

The eigenvalue of G, is

Gy, It slightly exceeds G The

0g *

(guiding) surface r = a/x/E in z direction and rotating
in azimuthal direction. The existence of localized wave of
such type is the result of appearance of two close cut-off
points in radial direction. If right cut-off point is the result
of plasma density decrease to the periphery of plasma
column, the left one could be associated with the
curvature of the cylindrical surface.

3. FORMALISM FOR LOCALIZED MODE

We assume that localized wave may exist in two-
dimensionally non-uniform plasma and has a guiding
surface y = f(x). We introduce coordinates U across the
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surface and v along it. Below are the implicit formulas
for them.

x=xs+u&, )
1+ 72 (%)
R 1% ST — (10)
JL+ F72(x)
v=Jf 1+ f " (x)dx (11)

0

df ) ) .
where f':d—. Coordinate u is the distance between
X

point (X,y) and curve y= f(x) with appropriate sign
Coordinate Vv is the length of the segment of the curve
between the initial point and the point (X, Y,) (see Fig.1).

This coordinate system is orthogonal. In it the guiding
surface equationis U=0.

y=f(x)

Fig.1. Cross-section of the guiding surface (bold line) by
the surface z =0 (trajectory) and coordinates u and X

Let us introduce the characteristic length scale a and

consider the short-wavelength case Ga’>>1. The
solution of Eq. (1) for the radial mode number n we
write in the following form:

exp(—gu’ +iy)

K (12)

Here k = Vw, g and y are functions on v which vary

o=S5,

in space with the characteristic space scale a, S, | is the
polynomial in U order of n—1 with coefficients
dependent on VvV excluding that one before the lowest
degree. It should be even if n is odd and vice versa. As in
the above example, we consider the case n=1 in that
S, =1. After substitution of the expression (12) to Eq. (1)
terms of different orders appear. The largest one, order of
G or k?,is D® , where

D=ReG-k*. (13)
This term should be nullified at the guiding surface:
D|_,=0. (14)

Since the wave is localized in the direction of u
coordinate we use Teylor expansion for D . With account
of Eq. (14) it reads:

2 2
D(u,v):u@ +u—a IZD
oul,., 2 du
The first term in (15) has order of k> and, being the
only term of such order, should be nullified too:

(15)

u=0

oD

Eu:O
Eqgs. (14, 16) are enough to determine the guiding surface
and value of k on it k, =k| . They used for this

=0. (16)

0
purpose in paper [1] directly. Using them and the fact that

the wave vector K, is tangent to the trajectory, the cut of

the guiding surface by the plane z=0, we obtain the
following differential equations for the trajectory:

rzd_r:k*o, 17
T

- k,VD 1

K, = ) -—VD (18)
ok

The equations for g and w could be found when the

remainder terms of Eq. (1) order of k are taken into
account:

. i 0°D
g=-2ig° - —— (19)
400,
y=k:—g+-ImG (20)

2

The localized wave exists if the term in Eq. (19)

2

u=0
is negative. If this term does not depend on 7 there is
solution of this equation with § =0 and Img=0. As it

follows from Eq. (20), purely real g provides corrections

o°D

to the phase, but not to the amplitude. If —

vary
u=0
with 7, real part of g and the wave channel width

change. The variation of Reg causes the appearance of
the imaginary part of g . Its presence in Eq. (20) provides
subsequent change of the wave amplitude.

The remainder terms in Eq. (1) are order of k'’> and
k. They are disregarded. Therefore, the error in the

solution is proportional to k™'/?. This error has higher
order than for WKB solutions for those the error is

proportional to k™.

4. TWO-DIMENSIONAL LOCALIZED MODES

We use the formalism presented above for studying
the electrostatic localized waves in azimuthally symmetric
plasma cylinder with G given by expression (6). In this
simple case the equations for trajectory (17) and (18) are
solvable analytically. The expression for particular set of
trajectories is the following:

JG /G
F=6,a>—r sin[ a"TJ—éyro COS[TOTJ @1)

Other trajectories could be produced by rotation of these
ones around z -axis. The trajectories are elliptic. In the

case I, =a/ V2 the trajectory is round. In this case the

results of second section could be fully reproduced within
the approach developed.
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To check the analytical solutions we use finite
difference modeling of Eq. (1). For it a boundary problem
should be formulated. We choose X >0 half-space as the
domain. At x=0 and y <0 we specify the value of ®

that is given by our analytical solution. At x=0 and
y >0 at the expected wave field location we use the
condition for

traveling wave

boundary
=0, where the values of k are also

(6;1) + ikd)]
ay x=0

taken from analytical solution.
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Fig.2. Contours of the module of wave field |®| for

a=8cm, r, =6.5cm and G, =6-10° cm™

We close boundary of the domain far from the expected
wave location so that the character of boundary conditions
there influences small enough on the numerical solution.
The result of calculation for a=8cm, r, =6.5cm and

G, =6-10>cm™ at the mesh containing 200000 points is

given in Fig.2. The figure showing the wave amplitude
relates both to analytical and numerical calculations

because the difference between them is not visible. Only
small difference is observed also for the phase of the
wave.

CONCLUSIONS

We have investigated the interesting phenomenon of
localized wave in the media described by two-
dimensional Helmholtz equation. One of such media
could be magnetized low-density plasma.

We have developed a formalism that, like WKB
method, exploits smallness of wavelength before the
space scale of media non-uniformity. This formalism
allows one to calculate the distribution of the wave field
in media with arbitrary two-dimensional continuous non-
uniformity. The accuracy of it is less than that one of

WKB approximation. It is proportional to k'’* while the
accuracy of WKB is proportional to K .

Using the formalism, the localized waves in radially
non-uniform plasma cylinder are studied. Besides
localized waves with circular trajectories, the waves with
elliptic trajectories are found and, their fields are
calculated. These calculations are checked by the finite
difference simulation. The coincidence between the
calculation results is noticable.
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JIOKAJIN30BAHHBIE 3JEKTPOCTATHYECKHUE BOJIHBI B IBYMEPHO HEOJHOPOIHOMN
3AMATHUYEHHOM ILIABME

B.E. Mouceenko

HccnenoBaHa IOKanu30BaHHAs 3JIEKTPOCTATUYECKAsl BOJIHA B 3aMAarHUYEHHOH ITIa3Me, ONUCHIBAEMAsl IBYMEPHBIM
ypaBuenuem ['enpmrounbia. [iis ee onucanus paspaboran GopMalin3M, HCHOJIB3YIOIUHA, kak U npubmmkenue BKb,
MaJIOCTh AJMHBI BOJIHBI [0 CPABHEHUIO C IIPOCTPAHCTBEHHBIM MAacIITabOM HEOIHOPOIHOCTH cpelbl. Pa3spaboraHHBIN
(bOpMaJ'lI/ISM HCIOJIB30BaH I M3YYCHHUA JIOKAJIM30BAHHBIX BOJIH B paJdaJIbHO HCOJHOPOAHOM IJIA3BMCHHOM IUWJIMHAPE.
KpOMe BOJIH C KPYT'OBBIMU TPACKTOPUAMHU, Haﬁ[[eHbI BOJIHBI C TPAaCKTOPHUAMU B BUAEC IJUJIUIICOB U PACCUNUTAHBI UX ITOJIA.
OTH pacyeTsl BepH(UIIMPOBAHEI C TOMOIIHI0 KOHEYHO-Pa3HOCTHOTO MOJEINPOBAHUS.

JIOKAJII30BAHI EJTEKTPOCTATHYHI XBUJII B IBOBUMIPHO HEO/JHOPIJTHIA 3AMATHIYEHINI
IJIA3MI

B.E. Moiceenko

JocmimkeHo JOoKalli3oBaHy eNeKTPOCTaTHYHA XBHJIIO B 3aMarHidueHidl mima3mi, IO ONHCYETHCS JBOBHMIPHUM
piBasiHHsIM [enbmrosnbua. [logo ii onucanHs po3po0ieHo GopmartiaM, sikiii BAKOPUCTOBYE, sik 1 MeToa BKDB, manicts
JOBKMHM XBWJI B TIOPiBHSAHHI 3 TIPOCTOPOBHM MAacIITaboOM HEOJHOPIAHOCTI cepemoBumma. dopmaiizM 3aCTOCOBAHO J0
BHBYCHHS JIOKAJI30BAHWX XBWJIb B PaialbHO HEOJHOPIMHOMY IUIa3MOBOMY HWIHIApPi. OKpiM XBHJIb 3 KiUJIBIIEBUMH
TPAEKTOPISIMH, 3HANAEHO XBHWJII 3 TPAEKTOPIAMH Yy BHUIUIAL €JINCiB Ta po3paxoBani ixHi moms. L{i pospaxyHku

Bepu(iKoBaHi 3a JOIIOMOTOIO CITKOBOTO MOJICITIOBAHHSI.
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