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Introduction 

Let consider low frequency oscillations those can be 
excited and propagate in plasma. Therefore we shall 
limit ourselves sufficiently slow development of 
macroscopic processes. Such a supposition is necessary 
for the possible application in hydrodynamic description 
that together with electromagnetic one for the field is 
expressed by equations of magnetic hydrodynamics [1] 
relatively to medium velocity u r( , )t , intensity of a 
magnetic field b r( , )t  and a density of media ρ( , )r t .  

In linear magnetic hydrodynamics a wave packet 
contains seven types of characteristics: two rapid 
magnetoacoustic waves, two slow magnetoacoustic 
waves, two Alfven waves and entropy wave. The state 
vector Ψ  describing the considered wave packet at 
each spatial point M x y z( , , ) and at any time moment 
t is determined for initial and boundary conditions of 
the above waves. 

Under definite physical conditions, for example, at 
the meeting of the solar wind with the Earth magnetic 
field, or at sudden inclusion of an electromagnetic field, 
or during collisions of two gas masses and so on arise 
strong discontinuities under which not only derivatives 
of the MHD-values are discontinuous along spatial-
temporary coordinates, but these values themselves are 
also discontinuous ones. Jumps of MHD-values on a 
surface of discontinuities are determined according to 
integral laws of conservation or integral balance 
equations. As to differential equations of 
magnetohydrodynamics the solutions of those are 
inaccessible at differential of discontinuous values on 
the surface of discontinuity they can be represented in 
the integral form [2] completely equivalent to 
differential equations (induction and Navier-Stores 
equations) and also initial and boundary conditions 
above mentioned. 

The questions of evolution in 
magnetohydrodynamics 

Here it should be noted two factors connecting to the 
problem of evolution in magnetic hydrodynamics occur. 
The first factor may already refereed to the classical one 
and it has been considered sufficiently well in literature 
[3] and we named it conditionally evolution of 
discontinuities in space. As it seemed setting of 
boundary conditions for discontinuities is not sufficient 
to determine discontinuity moving of the MHD-medium 
by the only one method. One needs to take into account 
an increase of entropy and also wave stability in 

reference to splitting it into several discontinuous or 
automodel waves. Such waves in magnetic 
hydrodynamics are called evolutionary ones. For them 
infinitely small disturbances of MHD values evolves 
with time remaining small. The nonevolutionary wave is 
instantly splitted (in case of an ideal medium). 

The problem of evolution of initial disturbance has 
here a unique solution if a number of expanding waves 
(a number of unknown disturbances) is equal to a 
number of independent boundary conditions. In this 
case the initial discontinuity is evolutionary one. 
Otherwise the problem has either innumerable quantity 
of solutions or the solution of this problem is 
inaccessible generally, i.e. discontinuity is non-
evolutionary and splitted. 

The evolution conditions of shock wave easily to 
find, analyzing the linear boundary conditions, written 
down in laboratory system of coordinates. In brief these 
evolutionary conditions can be formulated as follows. 
Relatively the Alfven disturbances exist two domains of 

evolution u V u Vz
a

z
a

1 1 2 2> >,  (over Alfven) and 

u V u Vz
a

z
a

1 1 2 2< <,  (up to Alfven). Here index 1 

means domain ahead of a shock wave, and index 2 
behind of it. V a

1 2, − the phase Alfven  wave velocities 
accordingly in medium 1,2.Two evolution domains of 
shock waves the relation to magnetoacoustic and 
entropy disturbances: the fast shock wave 

V u V u Vz z1 1 2 2 2
+ − +< < <,  and the slow shock 

wave u V V u Vz z2 2 1 2 1< < <− − +, . Here V1 2,
± −  the 

phase velocities of the fast and slow magnetoacoustic 
waves. As, V V Va− +≤ ≤ , then fast shock waves are 
over alfven, and slow shock waves - up to Alfven .It is 
necessary to note, that Alfven, tangential and contact 
types of breaks are always evolutionary.  

The second factor leading to the question of wave 
evolution in magnetic hydrodynamics is connected with 
taking into account initial conditions. It should be noted 
that interaction of MHD waves with moving boundary 
of two media is sufficiently dependent on moving 
boundary formation (in other terminology - on the 
surface of MHD-values discontinuity). It can be the 
interface of motionless and moving media. In this case 
motion itself is due to external sources. The velocity of 
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boundary movement can be relative arbitrarily to phase 
velocities of waves in immovable medium. However, as 
the boundary and medium move along one site from 
non-uniformity the difficulties to determine the amount 
of divergent waves do not arise, can be used the above 
described principle of evolution of MHD waves.  

The discontinuity surface itself can be the boundary 
formed as a result of propagation of rumpling wave 
changing medium properties but not actuating the latter 
for movement. In this case the movement of the medium 
in both sides is absent, the phase velocity of waves do 
not depend on the velocity of the boundary movement 
and the characteristics of a transmitted wave are 
determined only by parameters of the medium. 

Considered above two variants of forming boundary 
movement reduce to varied non-stationary boundary-
value problems resulting in wave scattering patterns of 
sufficiently different nature. There is a very important 
non-stationary problem with taking into account the 
evolution which may be according to above mentioned 
description is called as the temporary MHD evolution. 
In this connection the initial moment of the non-
stationarity is very important, that is the statement of the 
initial conditions, which make sense to consider at final 
temporary moment. Usually at research of interaction of 
a packet of MHD waves with moving nonuniformities 
assume, that the process if inclusion of a movement 
occurs adiabatic on infinity. It for some processes can 
be strong idealism. This idealism can set in loss 
qualitatively of the new phenomena, connected directly 

to occurrence of the of this motion. Any real 
phenomenon begins in a final moment of time, the 
initial conditions can be considered in a zero moment of 
time. 

Integral formulation of boundary-value 
problem 

In this case a differential formulation of the solution 
of the boundary-value problem can leads to the 
difficulties, connected, on the one hand, with the 
indefinite discrepancy of the secondary waves to the 
number of boundary conditions, that has coincided 
fortunately for considering the spatial evolution. On the 
other hand, it is due to purely mathematical difficulties 
of mixed boundary-value problems solution.  

Therefore it is meaningful to apply an integral 
formulation of the problem, automatically including the 
boundary and initial condition. This idea is confirmed 
by N.A. Khizhnyak and Nerukh А.G. [4] successful 
application of the non-stationary integral equations by 
consideration similar of boundary-value problems in 
electrodynamics. There chain of the integral Volterra 
equations describe interaction of electromagnetic waves 
with non-stationarity medium. 

For analysis of non-stationarity boundary-value 
problems in linear magnetic hydrodynamics let us use 
the integral equations of non-stationarity magnetic 
hydrodynamics in terms of the constant magnetic field 
perturbation b r( , )t , medium perturbations velocity 
u r( , )t  and perturbations density ρ( , )r t [5]: 

u r u r K u r K b r K r K u br t( , ) ( , ) ! ( , ) ! ( , ) ! ( , ) ! ( , ), ( ), , ,t t t t tr t
u

r t
b

s= + + + +0 1ρ ρ  

where u r0 ( , )t  is an incident field and 
! , ! , !, , ,K K Kr t

u
r t
b

r t
ρ  are the differential-integral operators 

of distribution of the velocity, magnetic field and 

density. Each of these operators can be represented as a 
sum of suboperators, conditionally describing different 
properties of MHD media, namely  

! ! ! ! ;,K r t
u

S
u

A
u u= + +Γ Γ Γ ν

! !
,K r t U

ρ ρ= Γ ; ! ! ! !
,K r t

u
S
u

A
u u= + +Γ Γ Γ ν  and ! ! ! .,K r t

b
A
b

U
b= +Γ Γ  

Here !ΓS
u  is responsible for pressure of conducting 

media and operates as follows 

( )! ! graddiv uΓ ΠS
u

s SV V Gu = −1
2

2
2 ; the operators 

! , !Γ ΓA
u

A
b  are responsible for a magnetic tension of MHD 

media and look like 

! ! , rotrot , , ! ! , rot ;Γ Π Γ ΠA
u

A
u

A
b A A bG

B
B

G
V
B

V
B t

u V s s s b s s2
2= −
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the operator [ ]! ! , rot uΓ ∆Πν νu
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AG
V
B

u s= 1
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1
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presence of magnetic viscosity of media; the operators 

! , !Γ ΓU
b

U
ρ  are connected  with macromovement of the 

discontinuity: 

[ ] ( )! ! , , , ! ! grad ,grad .Γ Π Γ ΠU
b b

U
SG G

V
b

B
U U= −









 = −1
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ρ
ρ
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 Here, MHD-potentials of velocity, magnetic field 
and density are defined by analogy to the Hertz 

potentials in electrodynamics  
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Π
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∫ ∫  (2) 

And, at last, the operator ! ( , )K u bS  is defined by presence of surface currents.  
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The kernel of the integral equation  (1) is the 

Green’s function ( )! ' , 'G t tr r− −  for a free space, 

determined by parameters { }B 1 , , ,V VA S1 1 1ρ . Such a 
representation is typical’s for the integral equations of 
scattering problems. The Green‘s function of MHD 
linear media is written down in a basis, connected with 
an undisturbed magnetic field as follows: 

e e e e s B 11 2 3 2 1 1, , , /= = B .The complete its 
description has been given in [2]. 

Equation (1) is fully equivalent to the corresponding 
differential equations of magnetohydrodynamics and the 
initial and boundary conditions at the surface of 
inhomogeneous, in laboratory system of coordinates. 

Formally, the equation (1) can be considered as a 
linearised equation of magnetic hydrodynamics with by 
nonlocal boundary conditions, written in laboratory 
coordinate system. At the boundary-value problem 
solution in differential formulation the local boundary 
conditions can either be satisfied for waves of the same 
style, or their satisfaction needs usage of several modes. 
For integral formulation this difficult question is solved 
automatically, which is caused by physics of the 
phenomena. 

The integral equations (1) contain whole information 
on scattered waves for the following problem 
formulation. Assume, that some inhomogeneous, which 
is characterized by parameters: B 2 , V VA S2 2, , 
ρ ν2 , m , occupies a volume V t( )  with time-dependent 
in a general case boundary. Assume, that considered 
inhomogeneous is placed and move uniformly with 
velocity U 0  in unbounded MHD medium, described by 
parameters B1 , , , ( )V VA S m1 1 1 0ρ ν =  before its 
excitation by the incident field u r b r0 0( , ), ( , )t t  
correspondingly. 

Let carry out an analysis of ratio (1) in frame of a 
non-stationary problem of diffraction on the 
inhomogeneous of the volume V t( )  using notations 
and terminology assumed by A.G. Nerukh [4]. So, 
general ideology is as follows. 

Assume, that the object of diffraction before a 
moment t = 0  is described by parameters 
B1 , ,V VA S1 1  and ρ1 . At temporary moment t = 0  the 
state of an object is changed for 
B 2 2 2 2, , , ,V VA S mρ ν and U 0 . Change of the state 
results in that, (1) disintegrates in the chain of 
evolutionarily connected expressions. 

 There are three temporary intervals for the internal 
field. At t < 0  the four-dimensional interval of 
integration of equation (1) for temporary- spatial 
coordinates is unlimited as the integration is made for 
the crossing of the region of a transmitted light cone 

with the top at a point ( )t ,r  and into region given by 

the characteristic function 
( )χ t

V t
V t,

, ( )
, ( )

r
r
r=

∈
∉





1
0 . 

After a zero temporary moment the part of the 

region of integration limited by hyperplane appears 
t ' = 0 . How the object is in a new state. And two 
regions of integration appear. One of them is completely 
in four-dimensional spatial region of events 
corresponding to the object of diffraction. There is no 
effect of boundaries of a diffraction object and one is 
taking into account only change of medium properties in 
pure appearance. If the equation (1) is used for all the 
four-dimensional space intervals then it will describe 
the field in unlimited medium with similar properties as 
the medium within the object. 

Starting from the moment ( )t
u

d=
1

r , where 

( )d r  is a minimal distance from a point of r  to the 
boundary of volume V ( ),0  a transmitted light cone 
will already cross the boundary of four-dimensional 

domain ( )χ t ,r = 1 and a boundary of V t( ) will effect 
on formation of the internal field. 

As a result we obtain the following evolution of 
process of the field interaction with a object of 
diffraction.  

A point of observation is within the region V t( ) . 1) 
Before the zero temporary moment the incident field 
u r b r0 0( , ), ( , )t t  generates the internal fields 
u r b r1 1( , ), ( , )t t . 2) After changing of state of an 
object at zero temporary there is no effect of the object 
boundary of an object in the region and incident field 
does not obviously take part in creation of the internal 
field, that is the field u r b r2 2( , ), ( , )t t  is directly 
generated by the field of u r b r1 1( , ), ( , )t t , formed 
within the object before changing of the state and 
conditioned by the field of u r b r0 0( , ), ( , )t t  that is 
the memory of medium. 3) To form the field 
u r b r3 3( , ), ( , )t t  together with the field 
u r b r1 1( , ), ( , )t t  the incident field 
u r b r0 0( , ), ( , )t t  crossing the boundary and field 
u r b r2 2( , ), ( , )t t  take part in the process above 
mentioned.  

A point of observation is beyond the region of 
V t( ) . Then from the expression (1) we receive the 
square formula. In this case two temporary intervals are 

allocated. 1). At ( )t
u

l<
1

r ,  where ( )l r −  distance 

from a observation point at moment t=0 up to the 
nearest point of domain V t( ) , the external field 
defined by nondisturbance condition of diffraction 
object by founding field u r b r1 1( , ), ( , )t t . 2). At 

( )t
u

l≥
1

r ,  an external field, on which already 

influence and the new condition, will be defined in view 
of a field u r b r3 3( , ), ( , )t t . 

In this connection the following algorithm to solve 
the problem is considered. Firstly the solution of non-
disturbance problem that can be considered as steady-
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state one with corresponding choice of point parameters 
is sought. Secondary is sought the solution of the 
disturbance problem, but without the effect of 
boundaries of a diffraction object, that is only the 
disturbance of the medium itself is present. At the third 
stage the problem is solved with taking into account the 
boundary-value effects. 

If the non-stationarity dissipation problem of MHD 
waves on the elementary plane boundary it is possible to 
consider theoretically stage by stage investigated, in 
sense mathematical realization there is the set of 
difficulties. First of all transformation of waves an each 
other on the boundary of interface a much complicates 
problem. It is characteristic just of magnetic 
hydrodynamics. The transformation is displayed already 
by consideration of a three-dimensional stationary 
diffraction problem even on the elementary 
inhomogeneous is half-space. In this case the expression 
(1) is not divided on the separate equations, describing 
only Alfven and only magnetoacoustic waves. Here it is 
possible to look after complete transformation of MHD 
waves, as was made. That is wave as though 
«interplace». More simple two-dimensional diffraction 
problem allows to consider separately of a boundary-
value problem for Alfven and in common for fast and 
slow magnetoacoustic waves. Here it is possible to look 
after transformation of magnetoacoustic waves. And 
that, at last, completely to exclude transformation of 
waves, it is meaningful to consider a spatially single-
dimensional problem separately for an each type of 

waves. 
In short a problem of scattering of Alfven wave by 

plasma half-space (MHD-inhomogeneity) after a 
initiating its movement is considered. 

The model in which one type of MHD waves is 
coupling with another through a plane boundary 
between two media is an important first approximation 
for the description of the propagation of small 
perturbations in strongly inhomogeneous MHD media. 

Let the plane Alfven wave 

( )u r
b r

u
b

0

0

0

0
0 0

( , )
( ,

exp
t
t ik z i tA A








=








− ω     

falls onto a plane boundary (z=0) of two nondissipation 
medium having parameters B i Ai Si iV V i, , , , , .ρ = 1 2  
Let internal medium  begins a uniform moment with 
velocity U0  to perpendicularly its boundary in moment 
t=0. Prior to the beginning a movement an 
inhomogeneous occupied domain (z>0). Then the law of 
boundary movement will be set by the formula 

( )z t U t( ) = 0θ . Here ( )θ t  is the Heaviside 
function. 

For such a setting a diffraction problem in case of 
consideration only the Alfven wave is of scalar form. 
Then integral relationship (1) to find the Alfven field 
incident on the MHD inhomogeneous and reflected 
from the latter is as follows: 

( ) ( ) ( ) ( )u t u t
B

V V
z t

dt b t G t t dx x A A x
A

V t

( , ) , ' ' , ' ' , ' '
( ')

r r r r r r= + − − − −
−∞

∞

∫ ∫0
1

1
2

2
2

21 ∂
∂ ∂

 

( ) ( )− −






 − −

−∞

∞

∫ ∫V
B
B t

dt u t G t t dA x
A

V t
1

2 2

1

2

21
∂
∂

' ' , ' ' , ' ',
( ')

r r r r  

where G A  is the Green function of Alfven component given by  

( ) ( )G
V

x x x x t t
x x

VA
A A

= − − − −
−









1
2 1

1 1 2 2
3 3

1
δ δ θ' ' '

'
, 

here ( )θ t − the Heaviside function, ( )δ x −  the 
Dirac function. 

Three-dimension integral on spatial variable easily 

to reduce to single-dimension integral. For internal 
medium we have 

 

( ) ( ) ( )
( )

( )

u t G t t d u z t t
z

V
t

z
V

dz

u z t t
z

V
t

z
V

dz

x
A

x
A AV t
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A Az

r r r r
z t
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' , ' ' , ' ' ' , ' '
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'

' , ' '
'

' .

'( ')
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∫∫

∫
∞

θ

θ

1 1

1 1

  (4) 

And for external medium we have 

 ( ) ( ) ( )
( )

u t G t t d u z t t
z

V
t

z
V

dzx
A

V t
x

A Az t

r r r r' , ' ' , ' ' ' , ' '
'

' .
( ') '

− − = + − −






∫ ∫

∞

θ
1 1

 (5) 

On structure (4,5) practically coincides with the 
appropriate integral equation in a dissipation problem of 
electromagnetic waves by plasma half-space. Omitting 
the intermediate mathematical calculatious one can note 
the sufficiently new results of magnetic hydrodynamics 
arising in the solution of the non-stationary  boundary-

value problem for the Alfven waves in case of taking 
into account the initial temporary moment of origin of 
spatial boundary movement starting under the condition 
of U VA0 1< . 

For the analysis of the internal field after initial 
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movement ( )t > 0  it follows that the field in the region 
of V t zA1 <  does not have either frequency and wave 
number and the amplitude existed before starting of 
movement of the Alfven wave is changed and the 
constant component due to jump of velocity of medium 
appears. It is connected with that boundary-value effects 
for the moving boundary do not influence on this field. 
In the region of U t z V tA0 1≤ ≤  it is necessary to 
consider separately cases of «run-away» U 0 0>  and 
"encouter" U 0 0<  movement with for each case we 
obtain the Volterra two-dimensional equation of the 
second type with the Fredholm kernel for that was 
developed sufficiently well the approach fort solution of 
problem as uniformly convergent Neiman series.  

The reflected field is easily restored by means of the 
quadrature formulas (5) for the already known internal 
field. Thus it should be noted the sufficient difference of 
a spectrum of the scattering field in case of the finite 
temporary moment from the spectrum of the scattered 
field for  the adiabatic inclusion at infinity. The 
spectrum of this field consists of waves with different 
frequencies propagating as from the medium boundary 
as towards boundary itself then as in case of inclusion at 
infinity there is only the wave reflected from the 
boundary in transmitted field. 

Conclusions 
The superficial analysis of the boundary-value non-

stationary problem for Alfven wave has shown the 
principal possibility of using the method of evolutionary 
integral equations of non-stationary macroscopic 
electrodynamical in a case of MHD description of 
waves in plasma. With the importance of strict 
mathematical solutions obtained for simple model 
problems that is the diffraction of one separately taken 
Alfven wave is that it can be the basis for construction 
of the approximate solutions of more complex 
boundary-value problems. 
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