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The differential cross section and the asymmetry coefficient for the two-body 3He break up by linearly polarized 
photons are calculated with the wave functions for Reid soft core, Paris and Bonn potentials. 

PACS: 21.45.+v, 25.10.+s, 25.20.-x, 27.10.+h.

The differential cross section for the reaction 3He
pd at photon energies E<25 MeV was shown [1] to de-
pend substantially on choice of the nuclear wave func-
tions  (WFs).  The  calculations  were  performed  in 
momentum space with the Faddeev WFs for 3N bound 
state for Reid soft core (RSC), Paris and Bonn poten-
tials. The Siegert theorem was applied in [1] to take into 
consideration a part of the interaction current effects in 
the electric multipoles. 

Explicitly the meson exchange currents (MEC) were 
treated in [2,3] where parametrization [4] of the 3He WF 
for RSC potential was used.  It was demonstrated [2,3] 
that the MEC contributions sizably increase the values of 
the cross section reducing discrepancies between the re-
sults of the calculations and the experimental data. 

Role of the interaction currents and rescattering in 
the pd system was studied [5-9] in the proton-deuteron 
radiative capture.  Area of  energies  examined in  [5-9] 
corresponds to lab

γE ≤ 139.1 MeV in the 3He photodisin-
tegration. Results [7-9] allow one to single out a kine-
matic region  where the effects of final state interaction 
(FSI) do not appear to be crucial for the cross section of 
3Hepd and give an opportunity to scrutinize manifesta-
tion of the P- and D-components of the 3N bound state 
WF.

Aim of this paper is to carry on investigation [3] and 
to study dependence of the energy and angular distribu-
tions of the cross section and the beam asymmetry on 
the  3He WFs using precise numerical  solutions of  the 
Faddeev equations obtained in Ref. [10].

The observables are computed with the nuclear cur-
rent  including contributions from convection and spin 
currents, the two-body currents generated by pion ex-
change (πEC). The Riska model is taken for the latter. 
The  πNN  form  factors  in  the  operators  of  MEC are 
chosen in the monopole form with the cut-off parameter 
Λπ=1.2 GeV. The reaction amplitudes are calculated in 
the framework of  Refs.  [2,3],  where details  regarding 
the techniques can be found.

In Fig. 1 the differential cross sections obtained with 
the Hannover-Helsinki  WF [4]  for  RSC potential  and 
the  Bochum-Cracow  WFs  [10]  for  Bonn  and  Paris 
potentials  are  compared  with  the  results  of  Ref.  [1]. 
According  to  the  present  calculations  there  is  only  a 
rather moderate dependence of the cross section on the 
nuclear  WFs  that  corresponds  to  the  conclusions  of 
Refs. [7-9] and contrasts with inferences of Ref.[1].

The  angular  distributions  for  Bonn  and  Paris 
potentials have been analyzed to study the variations of 
the cross section in detail.  The different sets Nα=2, 5, 
10, 18, 26, 34 of the partial wave components of the 3He 
WFs have been considered. 

The contributions of the S-waves correspond to the 
set Nα=2. D-waves are included in Nα=5. The set Nα=10 
consists of S-, P- and D-components with the total angu-
lar momentum in the two-body subsystem J=0 and 1. 
Partial waves with J≤2 are involved in the case Nα=18. 
The components of the  3He WF with J≤3(4) are taken 
into account in Nα=26(34). It turns out that no signifi-
cant  potential  dependence  appears  in  all  the  cases 
analyzed. 
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Fig. 1. Potential model dependence of the differential  
cross section σ=dσ/dΩγp for γ 3He→ pd.

Influence of  the  3He WF components  with orbital 
angular  momenta  2...5  on  angular  distributions  of  the 
cross section and the beam asymmetry is demonstrated in 
Figs. 2 and 3. 

The  calculations  in  the  plane  wave  approximation 
overestimate the data at forward and backward angles. 
Enhancement  of  the  cross  section  at  lab

γpθ 30° and 

lab
γpθ 150° rides  on  contributions  of  spin  current  and 

πEC. As it follows from comparison with the results of 
experiments  [13]  and  theoretical  investigations  [7-9], 
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the effects of the FSI cannot be neglected under these 
kinematic  conditions.  The  P-  and D-states  in  the  3He 
WF influence the cross section just in a vicinity of its 
maximum at E=9-16 MeV where nonorthogonality of 
the initial and final state WFs does not play a decisive 
role at least for this observable.
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Fig. 2. Angular distribution of the differential cross  
section for γ 3He→ pd.
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Fig. 3. Angular dependence of the asymmetry coeffi-
cient for γ 3He→ pd with linearly polarized photons

Being  calculated  with  the  convection  current,  the 
asymmetry coefficient Σ1 at 30°   lab

γpθ 140°.  Inclusion 
of spin current or/and πEC decreases Σ values and chan-
ges the shape of the angular distribution reducing its width.

As seen from Fig. 3, the asymmetry Σ is affected by 
the P-wave components of the 3N WF (cf. curves for 
Nα=5 and 10).  This  observation does  not  seem to  be 
very surprising in view of the fact that polarization ob-
servables in Nd elastic scattering [14] and pd radiative 

capture [15,16] were found to be remarkably sensitive 
to the NN interaction in states with L=1.

Nevertheless,  before  one  can  draw  definite 
conclusions whether the reaction γ

 3He→pd is of inter-
est for studying properties of the P-states in 3He WF, the 
role of the FSI effects in masking the sensitivity of the 
asymmetry coefficient to the components of the WF has 
to be investigated.
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