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A simulation of radiation-induced instability in binary 
semiconductors, such as GaAs, was fulfilled. The 
instability is connected with antisite defects 
accumulated. It was shown that the number of antisite 
defects in crystal under irradiation can significantly 
exceed their equilibrium concentration. We have found 
that the instability with respect to periodical defect 
distribution appears at some conditions of irradiation. 
The wavelength of the periodical distribution was 
estimated as 100 nm - 10 μm depending on crystal 
parameters.Introduction

Radiation is an effective tool for studying properties 
of materials. In multicomponent systems radiation can 
cause  transitions  to  new  phases  (see  review  [1]). 
Because irradiated substances are far from equilibrium, 
effects  of  self-organization  can  be  found  in  these 
systems [2]. For instance, the periodical distribution of 
point  defects  can appear  even in  the case of  uniform 
radiation and uniform sink density.

Spatial  modulation  of  composition  of  different 
materials was observed experimentally in many works 
[3 -  5].  For  instance,  in  [3,  4]  the oscillations  of  the 
composition of Fe-Ni and Fe-Ni-Cr alloys were detected 
after irradiation by Ni+ ions with the energies of 5 MeV. 

This effect has been investigated earlier for simple 
substances  ([6,  7]).  The  possibility  of  oscillation 
appearance is discussed in [8]. In [9] we predicted this 
phenomenon for ordered multicomponent alloys. In this 
work  we  analyze  such  an  effect  in  binary 
semiconductors.

First,  we  shall  calculate  the  stationary  values  of 
defect  concentration  assuming  uniform  defect 
distribution. Then we shall perform the stability analysis 
of such distribution.

1 Defect  concentrations  in  the  case  of  uniform 
distribution

Let  us  consider  how  the  radiation  influences 
materials. A binary compound consists of two types of 
atoms, which we denote as A and B. In a fully ordered 
compound each type of atom forms the sublattice (Fig. 
1,a). Even in the absence of radiation, there is a great 
number  of  point  defects  in  the  crystal.  The  typical 
defects  for  ordered  multicomponent  compounds  are 
antisite  defects,  i.e.  atoms  that  occupy  the  wrong 
sublattice (Fig. 1b). The radiation knocks the atoms of 
both types out of their sites, creating interstitial atoms 
and vacancies. Then these point defects diffuse over the 
crystal  and  participate  in  different  reactions.  For 
example,  an  interstitial  atom  and  a  vacancy  can 
recombine mutually. After recombination of interstitial 
atom and vacancy of the same type the ideal crystal is 
restored.  But  if  their  types  are  different,  the  antisite 
defect  appears  (Fig. 1c).  Unlike  the  interstitial  atoms 

and  the  vacancies,  the  antisite  defects  migrate  very 
slowly and they are accumulated in the crystal. In thin 
samples radiation creates defects almost uniformly. This 
is true for neutron and electron irradiation, which can 
penetrate deep into the sample. So we assumed that the 
distributions  of  defects  are  also  uniform.  Defect 
concentrations can be determined with the reaction rate 
method.  We  considered  the  following  point  defects: 
interstitial atoms of both types (their concentrations we 
denoted as IA  and IB), vacancies on both sites (Va and 
Vb)  and  antisite  defects  (Ab and  Ba).  We  used 
dimensionless  units  for  concentrations,  in  which  the 
volume of one crystal unit cell is equal to 1.

Fig. I, a -  ordered  binary  compound;  b -  antisite 
defects;  c - recombination  ofla  and  Vb  that  leads  to 
creation of the antisite defect

Time dependence of radiation defect concentrations 
is determined by the following kinetic equations:

dt
dIA  = A

aiK  Aa – A
iaK  IA Va – A

ibK  IA Vb + A
biK  Ab – 

– AB
ibK IA Bb + BA

ibK IB Ab + BA
iaK IB Aa – AB

iaK IA Ba – 
– αIA (IA – nIA) + K0 [Aa + Ab – z (Va + Vb)/2];

(1)

dt
dVa  = A

aiK  Aa – A
iaK  IA Va – B

iaK  IB Va + B
aiK  Ba – 

– B
baK Va Bb + B

abK Vb Ba + A
abK Vb Aa – A

baK Va Ab – 
– αVa (Va – nVa) + K0 (1 – z Va) (Aa + Ba);

(2)
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dt
dAb  = A

ibK  IA Vb – A
biK  Ab + AB

ibK IA Bb – BA
ibK Ab 

IB +
+ A

abK  Vb Aa – A
baK  Va Ab – α IA (IA – nIA) Ab / 2 + 

+ α IB(IB – nIB) Bb/2 + αVa(Va – nVa)/2 –
– K0(Ab – zVb).

(3)

The remaining three equations for IB, Vb and Ba can 
be written analogously after changing A↔B and a↔b. 
The equations for Aa and Bb can be obtained from the 
conservation of site numbers: Aa + Ba + Va = 1 and Bb + 
Ab + Vb = 1. 

The  following  defect  reactions  were  included  in 
these equations: 

1) recombination of interstitial atoms with the same 
or different types of vacancies (i.e. reactions like IA + Vb 

→ Ab or IA + Va → Aa );
2)  thermal  creation  of  Frenkel  pairs  from antisite 

defects and from atoms localized on their own sites (i.e. 
Ab → IA + Vb and Aa → IA + Va ); 

3)  substitution  of  atoms  or  antisite  defects  with 
interstitial atoms (e.g. IA + Ba ↔ Aa + IB);

4)  atom  transition  to  the  vacancy  in  the  other 
sublattice with ordering or disordering (e.g. Ab + Va ↔ 
Aa + Vb); 

5)  capture  of  interstitial  atoms  and  vacancies  by 
unsaturable  sinks,  such  as  dislocations  and  surface 
(terms  with  α;  nIA,  nIB,  nVa,  nVb are  the  thermal 
concentrations of corresponding defects); 

6) creation of Frenkel pairs by radiation (terms with 
K0; the terms containing z take into account the dynamic 
recombination of interstitials and vacancies, where z is 
the  number  of  atoms  in  the  region  of  dynamic 
recombination [10]).

Coefficients  K  can  be  evaluated  from  diffusion 
parameters.  Some of  them are related by the detailed 
balance principle. In this work we assumed that defect 
energies  and  diffusion  barriers  do  not  depend  on  the 
order  parameter.  So,  we  restricted  ourselves  to  low 
concentration  of  antisite  defects,  i.e.  up  to  several 
percent. 

There are a lot  of parameters needed to obtain all 
coefficients.  Most  of  them  have  been  determined 
experimentally  using  different  techniques  (see  [11]). 
But exact values for some parameters are still unknown. 
For  example,  determination  of  energy  barriers  for 
vacancy  jumps  is  very  difficult  due  to  variety  of 
mechanisms existing in binary semiconductors. In this 
work  we  used  the  parameter  values  determined  for 
GaAs.

To  estimate  the  stationary  values  of  defect 
concentrations,  we  set  time  derivatives  in  kinetic 
equations to zero and solved the set of eight algebraic 
equations.  Four of  them turn out  to be linear and the 
others are quadratic. This set was reduced analytically 
to  that  of  two equations,  both of  ninth order.  Further 
solving was performed numerically. It is necessary to be 
extremely  careful  while  performing  numerical 
calculations in such systems. Terms in these equations 
can be of different orders and computational errors can 

be  significant.  To  avoid  this,  we  worked  with  high 
precision numbers using software from [12]. 

The  temperature  dependences  of  these  stationary 
values  at  defect  production  rate  K0 =  10-5 dpa/s  are 
presented in Fig. 2.

1
3

K,T
10 −

nα

10-2

10-4

10-6

10-8

10-10

10-12

10-14

2.01.00.5

IGa

IAs

AsGa

VGa
VAs

1.5

Figure 2: Dependence of point defect concentration on 
temperature at defect production rate = 10-5 dpa/s. The 

scale on the x axis is proportional to the inverse 
temperature

 Dashed lines represent the defect concentration in 
the absence of radiation. The minimum in vacancy and 
antisite defect concentration is caused by competition of 
two  mechanisms  of  defect  creation.  At  high 
temperatures  the  thermal  fluctuations  determine  thes 
defect  concentrations.  At  low temperatures  the  defect 
concentrations are determined by the rates of radiation 
defect creation and thermally activated annealing. From 
Figure 2 it is seen that the antisite defect concentration 
is  large,  particularly  at  low  temperatures  of  the 
environment.

DEVELOPMENT OF PERIODICAL 
STRUCTURES

Now we should check the stability of the uniform 
defect  distribution  obtained  above.  Let  us  consider 
qualitatively  why  the  uniform  distribution  can  be 
unstable. The lattice gets deformed around the antisite 
defects due to the different size of atoms. This field of 
deformation affects migration of interstitial  atoms and 
vacancies  to  antisite  defects,  hence,  the  processes  of 
their recombination. If interstitial atoms are attracted to 
the regions of higher concentration of antisite defects, 
then they recombine mostly there. This leads to further 
increase of antisite defect density in these regions and to 
its  decrease  in  other  regions.  As  a  result,  the  defect 
distribution function becomes periodic in  space.  Such 
type of distribution is a superlattice of defect density.

To  analyze  this  phenomenon  quantitatively  the 
kinetic  equations  were  modified  to  include  diffusion 
terms, which appear in non-homogeneous fields. Let us 
consider the diffusion of the interstitial atoms of type A 
as an example. The migration of interstitial atoms can 
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be described with a reaction IA(r)  ↔ IA(r + dr), where 
dr is  the  vector  connecting  two  neighbor  interstitial 
positions. We took into account that both concentration 
and  energy  of  interstitial  atoms  are  functions  of 
coordinates. As a result the following term was added to 
the time derivative of interstitial atom concentrations:





 ∇+∇⋅=







∂
∂ )

kT
)(U )(I)(I(Ddiv

t
)r(I IA

AAIA
diff

A rrr

(4)

Index "diff" means that we wrote here only the terms 
describing the diffusion of  interstitial  atoms,  ∇ is  the 
gradient  operator.  UIA(r)  is  the external  potential  that 
describes the interaction of point defects. In this work 
only  interaction  with  antisite  defects  was  taken  into 
account,  because  their  concentrations  are  larger  than 
those of other defects. Thus the potential for interstitial 
atoms of type A was written as

( ) ( )[∫ +′⋅′−= rrrr bIA,AbIA AU)(U

( ) ( ) ] VdBU aIA,Ba ′′⋅′−+ rrr
(5)

UAb,IA(r – r') is the interaction energy of the antisite 
defect Ab situated in r and the interstitial atom IA in r'. It 
is seen that if  defect  concentrations are uniform, then 
UIA(r) is constant and both gradients in (4) are equal to 
0. 

For defect-defect interaction the following equation 
was used [13]:

Uα,β(r) = 3r8

VV3

π

∆∆ βα
2

11C
K







(–Ca) [3 – 5 (cos4 θx +

+ cos4 θy + cos4 θz)],
(6)

where  Ca is  the  anisotropy  parameter,  which  is 
negative  for  most  of  crystals.   C11,  K  are  the  elastic 
constants, θi is the angle between the radius vector r and 
i-th crystal axis,  ∆V is the parameter that characterizes 
the volume change due to introduction of the defect. In 
the case of cubic crystals with weak anisotropy, when 
the distance between the defects is much larger than the 
lattice period,  this formula describes  the defect-defect 
interaction. If the radius vector connecting the defects is 
oriented along the crystal axis, the defects of the same 
type attract each other. 

The values of the elastic constants for GaAs were 
taken  from [14].  Calculations  of  ∆V  for  GaAs  were 
made in [15] using ab initio simulations.

The  diffusion  of  other  interstitial  atoms  and 
vacancies can be described in a similar way. Also all 
reactions in equations (1) - (3) have additional terms in 
the non-homogeneous case.

Now we can check the stability of the uniform defect 
distribution.  To  do  this,  we  represent  all  the 
concentrations as  stationary uniform values and small 
non-uniform  deviations  around  those  values.  For 
example, the concentration of the antisite defects Ab was 

written as
Ab = Ab0 + δAb exp(ikr + λ t)

(7)
where Ab0 is the uniform stationary value obtained 

earlier  in  this  work.  All  other  concentrations  were 
written in such a form also. Then we substituted them in 
the  equations  (1)  -  (3)  modified  to  non-uniform 
distributions.  After  substitution  of  (7)  into  (5)  we 
obtained  Fourier  transform  of  the  defect-defect 
interaction potential (6). It has the following form:

Uα,β(k)  = 

2

11C
K







(–Ca) ∆Vα ∆Vβ

4

4
z

4
y

4
x

k
kkk ++

8)

One  can  see  from this  formula  that  interaction  is 
maximum if the wavevector is directed along the crystal 
axis.

λ(k) k

Fig. 3. The typical λ(k) for different irradiation 
intensities and temperatures

Because  we needed  only  to  check  the  stability  of 
roots,  we  assumed  that  the  deviations  are  small. 
Keeping only the linear terms in deviations, we obtained 
a  system  of  linear  equations.  This  system  has  a 
nontrivial  solution  if  its  determinant  is  zero,  which 
enabled us to determine λ(k). The stationary solution is 
stable  if  and  only  if  real  parts  of  all  λ(k)  values  are 
negative. 

The typical λ(k) for different irradiation intensities 
and temperatures are shown in Figure 3. When defect 
concentrations  are  small  and  the  interaction  is  not 
significant, λ(k) is negative and the absolute value of λ 
is higher for large values of k. It is seen as the effect of 
diffusion,  which  suppresses  the  non-uniform 
fluctuations.  When defect  concentration increases,  the 
interaction becomes more important.  Some fluctuation 
obtains  positive  feedback,  i.e.  Re  λ(k)  takes  positive 
values in some region of  k values. It means that small 
fluctuations  with  such  k grow,  which  leads  to  the 
development of the superlattice. The absolute value of k 
gives  us  the  period  of  the  superlattice.  Results  of 
stability analysis of the uniform solutions are presented 
in  the  plane  of  irradiation  intensity  (K,  dpa/s)  and 
environment  temperature  (T0)  (see  Figure  4).  In  the 
region 1 the uniform values of defect concentrations are 
stable.  In  the  region  2  the  system becomes  unstable, 
which leads to the development of the superlattice.  It 
should be noted that in the cubic crystals the instability 
appears simultaneously for several states with different 
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values of k, which have the same modulus but different 
directions. As the result complex structures like Bйnard 
cells  may  develop.  The  typical  period  of  the 
superstructures  depends  on  the  crystal  and  external 
parameters and varies from 102 to 105 lattice periods. It 
is possible to vary the period of the superstructure by 
changing the intensity and temperature of irradiation.
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Fig. 4. Regions of instabilities on the plane of  
irradiation intensity and environment temperature
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