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1. INTRODUCTION

The Dynamic Ergodic Divertor (DED) of TEXTOR is 
installed to control plasma edge behaviour [1]. The DED 
helical coils create a specific topology of magnetic field at 
the  plasma  edge,  where  external  DED  helical 
perturbations  with  poloidal  number  m and  toroidal 
number  n are resonant on the magnetic surfaces  ( )resrq = 

nm  (q(r) - safety factor) (see, e.g., [2, 3]). However, this 
topology  was  investigated  using  vacuum  DED  field 
perturbations without the plasma response. Remind, that 
the m = 12, n = 4 perturbation field structure is chosen as 
a standard DED operation regime.

The interaction of an external helical field with a plas-
ma was investigated also in the CSTN- IV tokamak [4].

In the present paper the influence of plasma response 
to DED helical perturbation penetration is considered in 
cylindrical  geometry.  Analytical  solutions  of 
perturbations are found and their numerical investigation 
is carried out.

2.

BASIC EQUATIONS
We start from magnetohydrodynamic equations
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We consider a current carrying cylindrical plasma whose 
axis  is  taken  to  be  as  the  z direction.  The  external  axial 
magnetic  field  0zB  is  large  with  respect  to  the  poloidal 
magnetic  field  0θB  produced  by  the  axial  current.  The 
perturbation values depend on the azimuthal angle  θ ,  the 
coordinate  z and  the  time  t as  ( )[ ]tkzmi ωθ −−exp , 

Rnk = , R  plays the role of the tokamak major radius, ω  is 
the frequency of the external perturbation.

For perturbations of radial components of plasma velocity 
~

rV  and  magnetic  field  ( ) π ρ4~
rrBrB =  the linearized 

version of Eqs. (1), (2) take the form: 

( ) ( ) ( ) ( ) ( ) ( )rBrF
dr
drF

dr
drrFriVrFrimrV

dr
dr

dr
d

rr












++=





+−

22222
~

2

2

2

2
2~

4
3

444

2

π ρ ωπ ρ ωπ ρ ωδπ ρ ωδ
, (3)

( ) ( ) ~

222
2

2

2

4
)(1

rrVrFirBik
r
mrB

dr
dr

dr
d

r π ρ ωδδ
−=





−+− ,  ( π σ ωδ 4c= , ( ) 000 zkBB

r
mrF −== θkB ). (4)

The  perturbations  ~
zV  and  ~

zB  are  small  and  for 

simplicity we put 0~~ == zz BV . We use approximation of 

an incompressible plasma motion 0~ =Vdiv , neglect the 
p∇  term,  variations  of  the  plasma  density  ρ  and 

conductivity σ  (compare with [5]).
The value ( )rF  is equal to zero inside the plasma, ( ) 0=resrF

, 

when ( ) nmrq res =  ( ( ) 00 θRBrBrq z= ). The region near 
resrr ≈  is the resonant (interaction) zone.

Inside and near the interaction zone Eq. (3) have the 
next  general  solution  normalized  to  the  value 

( ) ( ) ( )π ρπ ρ 44 ⋅== rkrICrBV m
vac
rrA  ( ( )krI m - 

modified Bessel and ( ) ( )zH 2,1
41  - Hankel functions):
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where
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( ) ( ) ( ) resresres rrrQrrz −= 212δ ,  RnSVQ zA ω= ,  π ρ40zzA BV = ,  ( )
resrrqrqS == |' . (8)

In the  ( )uR ±  term the radius  r  is a function of  u : 

( ) ( ) uQrrur resres δ21 ±= ,  a  -  the  minor  plasma 
radius.  Outside  the  resonant  zone 

( ) ( )rFrVr
24π ρ ω−≈± .  The  same  result  we  obtain 

from Eqs. (5), (6) in the case 12 > >z . We assume that the 
radial  vacuum  perturbation  of  magnetic  field  ~

rB  
dominates in the plasma and in the right side of Eq. (3) 
we  take  ( ) ( )krCIrB m=  (the  vacuum  perturbation  of  

the magnetic  field) .
From Eq. (3), (5), (6) it follows that the half width of 

the interaction (resonant) zone r∆  is of the order of
( ) 212~ Qrr res⋅∆ δ . (9)

From Eq. (4) we obtain the contribution to the radial 
magnetic field perturbation of the plasma motion response 
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The same for the poloidal component ( ( ) ( ) ( )rBrBrB vac
1

~
θθθ += , ( )zKm′ = dzdK m , ( ) dzdIzI mm =′ )
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3. COMPUTATIONAL RESULTS

3.1 Tokamak CSTN-IV
First,  we  present  calculations  for  the  CSTN-IV 

experiment [4] ( R =0.4 m,  a =0.1 m,  resr =7,5 cm,  m=6, 
n=1, 0zB =0.086 T, pln =1.5⋅ 1018 m-3).

Fig. 1. Profiles ( ) ( )res
vac
rr rBrB ~ , ( ) ( )res

vac
r rBrB ~

θ

The tendency in the ~
rB  and ~

θB  behavior is the same 

as it is in the CSTN-IV experiment ( f=20 kHz, δ =2 cm).

Fig. 2. The radial profile of the velocity rV
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A very wide interaction region width r∆  is observed. 
In  Ref.  [4]  the  theoretical  estimate  r∆ ~  4  mm  was 
declared. In the figures the vertical dashed line shows the 
resonant radius position.

3.2 TEXTOR-DED
Here the calculations for the TEXTOR-DED tokamak 

are presented ( R =1.75 m, a =0.47 m, resr =43 cm, m=12, 
n=4, 0zB =2.25 T, pln =1019 m-3).

CONCLUSIONS
It is shown that for the high frequency ( ~> 10 kHz) the 

radial  component  of  the  perturbation  field  ~
rB  is 

amplified  inward  of  plasma  from  the  interaction  zone. 
This  theoretical  result  confirms  the  CSTN-IV tokamak 
measurements.

For  a  lower  frequency  ( ~< 1kHz)  ~
rB  is  only 

attenuated in the plasma between the resonant zone and 
antenna.

Note,  that  for TEXTOR-DED the poloidal magnetic 
field component of the vacuum perturbation is practically 
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Fig. 3. The radial profile of the velocity rV :
a) f =10 kHz, δ =0.7 cm; b) f =1 kHz, δ =2.2 cm;

c) f =100 Hz, δ =6.96 cm.

Fig. 4. Profiles ( ) ( )res
vac
rr rBrB ~ :

a) f =10 kHz, δ =0.7 cm; b) f =1 kHz, δ
=2.2cm;c) f =100 Hz, δ =6.96 cm.



completely  compensated  by  the  plasma  perturbation 
response at resrr = .

The  width  of  the  resonant  zone  r∆  for  TEXTOR-
DED is of the order of 0.5 cm (or larger). It is much larger 

than the ion gyroradius. For the CSTN-IV experiment the 
width of the interaction region is very wide.

This work was carried out in the frame of the WTZ 
project UKR-01/003 between Germany and Ukraine.
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