
Fizika Nizkikh Temperatur, 2007, v. 33, No. 12, p. 1338–1341

Dynamic behavior of superconducting flux qubit excited

by a series of electromagnetic pulses

A.S. Kiyko, A.N. Omelyanchouk, and S.N. Shevchenko

B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine

47 Lenin Ave., Kharkov 61103, Ukraine

E-mail: kiyko@ilt.kharkov.ua

Received July 17, 2007

We study theoretically the behavior of the superconducting flux qubit subjected to a series of electro-

magnetic pulses. The possibility of controlling the system state via changing the parameters of the pulse is

studied. We calculated the phase shift in a tank circuit weakly coupled to the qubit which can be measured by

the impedance measurement technique. For the flux qubit we consider the possibility of estimating the relax-

ation rate from the impedance measurements by varying the delay time between the pulses.

PACS: 03.67.Mn Entanglement production, characterization, and manipulation;
74.25.Nf Response to electromagnetic fields;
85.25.Am Superconducting device characterization, design, and modeling;
85.25.Hv Superconducting logic elements and memory devices; microelectronic circuits.
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1. Introduction

Quantum effects in mesoscopic superconducting cir-

cuits based on small Josephson junctions have attracted

renewed attention. It has been demonstrated that

Josephson devices at low temperature behave like quan-

tum two-level systems. Therefore, ideas developed in

atomic and molecular physics can be used for description

of artificially fabricated circuits of macroscopic size.

These concepts are stimulated further by the perspectives

to realize quantum bits (qubits) for quantum information

processing. Qubits are effective two-level quantum sys-

tems with externally controlled parameters. In the last de-

cade a large number of proposals for building the qubits

based on Josephson elements were proposed [1–4]. There

are three basic types of Josephson-junction circuits that

behave quantum-mechanically at low temperature. They

are charge [1], phase [2], and flux [3] qubits. All of them

can be fabricated with high precision with the help of

modern lithography and can be the basis of the quantum

computer. Promising for quantum computations is the 3JJ

flux qubit that consists of the superconducting loop with

three Josephson junctions [3]. This type of qubit is insen-

sitive to charge noise, and it was shown that it has a high

quality factor [5]. It was predicted that such systems

should exhibit various quantum-mechanical effects in-

cluding macroscopic quantum tunneling of the flux [6].

Indeed the predicted effects have been observed experi-

mentally [2,7,8]. The quantum dynamics in single qubits

was studied in [3,4,9].

In our work we study the dynamics of the flux qubit

subjected to a series of rectangular electromagnetic

pulses. We present the model we use for calculations of

the phase shift � in the resonant tank circuit based on the

density matrix approach. Next we analyze the case which

permits analytical solution and obtain small addition to

the � in the ground state as function of the relaxation rate

�R . For arbitrary parameters we solve equations numeri-

cally and compare obtained result with analytical

calculations.

2. The model

Our aim is to study the behavior of superconducting

3JJ flux qubit excited by a series of rectangular electro-

magnetic pulses. Flux qubit consists of a superconducting

loop with three junctions: two identical and one with the

parameters differing by factor �. For all calculations be-

low we take� equal to 0 8. .

The Hamiltonian of the flux qubit in the two-level ap-

proximation has the form [10,11]:
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� � � ,H z x� � ��� �� (1)

where the diagonal term � is the bias and the off-diagonal

term � 	 �exp( )E /EJ C is the tunneling amplitude bet-

ween the wells. Here �� x , �� z are Pauli matrices in the ba-

sis {| , | }
� �� of the current operator in the qubit: � �I I z� 0� ,

I 0 � I g /C
 � �( , ) 2 , where IC is the critical current of the

qubit, g E /EJ C� , the explicit formula for the 
 �( , )g can

be found in Ref. 12. The eigenstates of �� z correspond

to the clockwise ( � | | )� z 
� � �
� and counterclockwise

( � | | )� z �� � �� currents in the qubit. The bias

� � ��

�
�

�

�
�I f0 0

1

2
� (2)

is controlled by the dimensionless applied magnetic flux

f /x�� �0 through the qubit;�0 2� h/ e is the flux quan-

tum.

The magnetic flux consists of two components:

f f f tDC� �
~

( ) , (3)

which describe the adiabatically changing magnetic flux,

f DC , and the time-dependent component,
~

( )f t . We will

study the possibility to control the system state via the se-

ries of the rectangular pulses with the amplitude f A and

duration from t n T
n

1
( )

( )� � � to t n T T
n

2
( )

( )� � �� :

~
( ) [ ( ) ( )]

( ) ( )
f t f t t t tA

n n� � � �� � �
1 2

, (4)

where �( )t stands for the theta-function, T is the pulse du-

ration, and � is the delay between pulses (Fig. 1). The effect

of the pulse is in changing the level occupation probabili-

ties and to make them oscillating functions of time during

the pulse. It should be noted that in the basis {| , | }
� �� of the

current operator, which are not eigenstates of the

Hamiltonian, the probabilities oscillate both during and af-

ter the pulse.

We describe the system’s evolution with the Bloch

equation for the density matrix �� (� �1):

d

dt
i H

�
[ � , �] � �

�
� �� � � � . (5)

The impedance measurement technique [13,14] con-

sists in that the tank circuit probes the effective induc-

tance of the system via measuring the phase shift � be-

tween the voltage and current in the tank circuit. The

phase shift � is related to the Josephson inductance � of

the qubit as follows:

tan ,� � �k QL2 1
� (6)

�
� �

�� �
�

� �
�

�
1

0

0

0

1

� �

�
( � � )

I

f

I

fDC DC
zSp �� . (7)

Here M is the mutual inductance of the qubit with the tank

circuit; Q R C LT T T� / , and k M LLT� / are the quality

factor and the coupling coefficient for the tank circuit,

which consists of the inductor, LT , capacitor, CT , and resis-

tor, RT , connected in parallel (see in [15] for more details).

3. Excitation of the flux qubit with the series of

pulses

In this Section we study the excitation of the flux qubit

with the series of rectangular pulses. We start from the

general 1-qubit Hamiltonian that has the form of Eq. (1)

in the basis of states {| , | }
� �� , assuming
~

( )f t � 0. For a

flux qubit these states correspond to a definite direction

of the current circulating in the ring. First the time-inde-

pendent Hamiltonian is diagonalized in the basis of

eigenstates {| , | }�� �� with the rotation matrix �S:

�
cos ( ) sin ( )

sin ( ) cos ( )
S

/ /

/ /
�
�

�

�
��

�

�
��

� �

� �

2 2

2 2
,

with sin � �� � �� �/ 2 2 , cos � � �� �/ �2 2 .

For the calculation of the observable value, the phase

shift � in the tank circuit, according to Eq. (6), we need

the density matrix in the energy representation, where its

diagonal components are equal to the probability of the

system to be in the ground |�� or excited state |��.
Next we introduce the time-dependent terms into the

time-independent Hamiltonian. Making use of the trans-

formation � ( ) � � ( ) �H t S H t S� �1 , we get the Hamiltonian � ( )H t

in the energy representation for the flux qubit [16]:

� ( ) �
~

( ) (cos � sin � )H t
E

I f t / Ez z x� � � �
�

� �
2

2 0 0� �� �� ,

(8)

� �E � �2 2 2� . (9)

The time evolution of the density matrix, which can be

taken in the form � ( � � � � )� � � �� � � �1 2X Y Z /x y z , is described

by the equation of motion (5). Initial condition for the den-

sity matrix in {| , | }�� �� basis is X Y( ) ( )0 0 0� � , Z( )0 1� ,

which corresponds to the ground state of the system. Sol-

ving the system of equations for X t( ), Y t( ), Z t( ) with
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phenomenologically introduced dephasing and relaxation

rates �� and �R :

dX

dt
E h t Y X

dY

dt
h t Z E h t

� � �

� � �

( ( ) cos ( )) ,
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dZ

dt
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�

� � � �

�

� 0

(10)

with h t I f t( )
~

( )� 2 0 0� , we obtain the probability of occu-

pation of the upper level |�� (the excited state) P t� �( )

� � ��22 1 2( ) ( ( ))t Z t / . We calculate the density matrix in the

flux basis making use of the transformation � � � �� �flux �
�S S 1 and

obtain the probability of the current to be circulating in the

clockwise direction P tL( ), according to:

P t X t Z tL( ) ( sin ( ) ( ) cos ( ) ( ))� � �
1

2
1 � � . (11)

Averaging the P tL( ) over t we calculate phase shift� ac-

cording to Eq. (6). For arbitrary values of the parameters of

applied perturbation the system of equations (10) can be

solved numerically. In the limiting case of one pulse (that is

� � ) and without relaxation processes taking into account

obtained results the solution can be found in Ref. 17.

Before presenting the numerical results, consider the

limiting case which permits the analytical solution:

T TR R!! � !!�
, ,� � �� 1 . (12)

In this case we can neglect the decay rates �R and �� in

(10) during the excitation time T and assume that after the

pulse during the delay time � the system is returned to the

ground state. Periodically repeating this process, we will

have the input of relaxation processes in the time-aver-

aged characteristics of the system.

With the assumptions (12) and for zero temperature

the solution of the equations (10) can be found for the two

time intervals: during the pulse (0 ! !t T ) and after the

pulse (T t T! ! � �).
The solution for 0 ! !t T is the following:

X t
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2 2
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�

�
�

� �

) ,

( ) ( cos ( ) ,

(13)

where A h� � sin ,� C E h� � �� cos ,� h I f A� 2 0 0� ; and

for T t T! ! � �:

X t t T X T E t T

Y T E

2 1

1

( ) exp[ ( )][ ( ) cos ( ( ))
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�

� �

�

�
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( ) exp[ ( )]( ( )) .

t T

Z t t T Z TR

�
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Let the duration of the pulse T equals to � / A C2 2� ,

which corresponds to the one cycle of excitation during

the time T .

Then we obtain:

X t t T
AC

A C
E t T

Z t
A

2 2 2

2

2

1
2

( ) exp( ( )) cos ( ( )) ,

( )
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�
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2
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t TR

�
� �exp( ( )) .�

Taking into account the inequalities (12), we obtain for

the time-averaged values Z and X the following expres-

sions:

X
AC

A C E
�
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2

2 2 2 2

�

� �

�
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, (14)

Z
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2 2 � �
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Before substituting these values in the (11) and (16) we

estimate the contribution of the X and Z into the phase

shift � for the parameters we use for calculation. Our

evaluation indicates that the contribution of the X is about

three orders lower than that of the Z, so we neglect the

term containing X in Eq. (11). We calculate the small ad-

dition to the phase shift � due to the relaxation process

� ( )1 . At the point f /�1 2 we obtain after some algebra:

�
�

( ) ( )

(( ) )
.1

2

0

2
0 0

3

0 0
2 2

2 1
�

�

k QL f I

I f

A

A R�

�

� � � �
(16)

Hence from the measurement of the phase shift� at the

point f /�1 2 it is possible to estimate the relaxation rate

according to Eq. (16). The behaviour of � ( )1 at the point

f /�1 2 as the function of the product ��R is presented in

Fig. 2. For the calculations we used the same parameters

as for the numerical calculations below.
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Fig. 2. The addition to the phase shift �" for the flux qubit ex-

cited by the series of rectangular pulses due to the relaxation

process in the point f � 0 5.



Now we study the excitation of the flux qubit by the series

of rectangular pulses numerically. Namely we calculate the

phase shift in the tank circuit by making use of the solution of

the Eqs. (6) and (10). Fig. 3 is plotted for the following set of

parameters for the qubit: I 0 0� � � 200 GHz, � �14. GHz,

k Q LI /2
0 0

32 10( ) � � # � ; the excitation
~

( )f t was considered

to be the series of the pulses with � � !! �T � 1, � � �0 5 1. � ,

� � �2 1� (from upper to down) and the decay rates

� � �R � � �� 0 1. GHz. We observe that at � � ��1 the reso-

nances disappear with increasing delay time �. This can be

used in practice for relatively simple estimation of the decay

rates by changing the delay time between the pulses.

Next we compare the theoretically (dashed) and numeri-

cally (marked by points) calculated curves for the phase shift

� calculated under the assumption (12) from the (14) and

(15). For the numerical calculations we use the following pa-

rameters of the pulse: T � 0 5. , � �100, f A � 0 005. and of the

decay rates � � �R � � �� 01. GHz. Such values of �, T and

�R ,� correspond to the limiting case which we considered

previously (12), and one can see very good agreement in

Fig. 4.

4. Conclusion

Dynamics of a flux qubit subjected to a series of rectan-

gular electromagnetic pulses. We investigated the changes

of the tank circuit phase shift� for the single qubit that ap-

pears due to excitation by the pulses. It was demonstrated

that the response of the tank circuit essentially depends on

the relation between the decay rates �R ,� and the delay

time �, which may be used for the estimation of �R by mea-

suring the phase shift � as a function of the delay time �.
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Fig. 3. The phase shift � for the flux qubit excited by the series
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Fig. 4. Comparison of the theoretical (dashed) and numerical

(marked by points) curves for the ecxitation with the series of

the pulse with parameters: T � 0 5. , � �100.


