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STOCHASTIC STABILITY OF A CLASS OF PARTIAL DIFFERENTIAL 
EQUATIONS OF THERMOELASTICITY 
 

Àn example of stability analysis of a class of partial differential equations (in 
terms of Lyapunov functional) is presented. Applying Kozin’s method to construc-
tion of Lyapunov functional the sufficient conditions of stochastic stability of the 
heat transfer in a strip-plate are established.  

 
1. Introduction. Considerable progress has been made over the last four 

decades, in the study of the problem of the stochastic stability of partial diffe-
rential equations. It has been initiated by the J. C. Samuels and Yu. M. Erin-
ger [12] and studies by mathematicians and engineers in the vibration analysis 
of beams, plates, shells and heat transfer problems. Two basic models with 
stochastic parametric excitations have been developed in the literature, name-
ly with stationary ergodic processes and white noise processes. For the models 
with stationary ergodic processes the stability analysis has been initiated by T. 
K. Caughey and A. H. Gray (jr) [6] and developed by F. Kozin [8, 9], F. Kozin 
and C. M. Wu [10]. A. Tylikowski has obtained several interesting results [16, 17]. 

The first work for the models with white noise processes has been pub-
lished by U. G. Haussmann [7] who applied the obtained results to the study 
of a heat-transfer problem. T. Caraballo, K. Liu, and X. Mao [5, 11] genera-
lized these results for instance. The new criteria of stability for string, stick 
and plate models with parametric white noise excitations have been obtain by 
A. Tylikowski [14, 15]. 

In this paper we will deal with problem of stability of the partial diffe-
rential equation, which describe the heat-transfer in strip-plate. We use the 
equation of motion derived by Yu. M. Kolyano, Ya. S. Podstryhacz [4] and we 
assume that the parametric excitations are in the form of stationary ergodic 
process. We apply the Kozin’s method to determine sufficient conditions of 
almost sure asymptotic stability. 

2. Mathematical preliminaries. The common stability properties of sto-
chastic systems that have been studied in the literature have generally been 
related to Lyapunov stability [13]. Recognizing that stability in the Lyapunov 
sense is merely a uniform convergence, which respect to the initial conditions, 
various concepts of stability for stochastic systems can be immediately defined 
by invoking one of the usual modes of probability theory. That is, for instan-
ce, convergence in probability and almost sure convergence. 

In that follows, 0 0u t x t( ; , )  will denote the n -dimensional vector solution 

at time t , with initial state 0x  at time 0t , u  will denote a suitable norm, 

such as an absolute value or Euclides norm, and we shell be testing the stabi-
lity of the equilibrium solution 0u ≡  of the partial differential equations 

 i
i

u
F u x t

t

∂
=

∂
( , , ) , 11i M= , , ,  (1) 

 0kA u x t =( , , ) , 0t t ≥:{ } , 21k M= , , . (2) 

 That system has the following distinctive marks [14]: 

1) occupies some region (coherent, open set) NΩ ⊂   is N -dimensional 

Euclidean space with a boundary 1NB − = ∂Ω , [ ]1
N

Nx x x= ∈, ,  ; 

2) describes the set M  of the function [ ]1 Mu x t u x t u x t= ( , ) ( , ), , ( , ) , which 

belongs to a function space of X XΩ ≡( ) , which is called phase space and 
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satisfies the system of partial differential equations (1), (2) in region 
1 1N NC + += Ω × ∆ ⊂  , where iF  and kA  are the differential operators, 

which are described by continuous, differentiable functions and related to 
spatial values. The space X  of the points may be the set of variable 
parameters, which characterize the condition of the system; 

3) the function u x t( , )  which characterize the system are assumed to take 
the values  

 0 0 0 0u u x t X X= ∈ Ω ⊃ Ω( , ) ( ) ( )   (3) 

in the plane 10 Nt +Ω × = ⊂ { }  (initial conditions) and the boundary 
conditions 

 1 1 1u u x t X X= ∈ Ω ⊃ Ω( , ) ( ) ( ) . (4) 

In stochastic case instead of equation (1) we consider the following sto-
chastic differential equation 

 i
i

u
F u x t

t

∂
= ω

∂
( , , , ) , 1i n= , , ,  (5) 

where ω  is an element of probability space B PΓ( , , ) . Similarly, the initial and 
boundary conditions are determined [14]. 

In this paper we will use the following definitions of stochastic stability 
[1, 2, 17]. 

Definition 1. (Almost Sure Lyapunov Stability). The equilibrium solution 
of system (5) is said to be almost surely stable if 

 { }
0 0

0 0
0

0 1
x t t

P u t x t
→ ≥

= =lim sup ( ; , ) .  

Definition 2. (Almost Sure Asymptotic Stability). The equilibrium solution 
of system (5) is said to be almost surely asymptotically stable if definition 1 
holds and 

 { }0 0 0 1
T t T

P u t x t
→∞ ≥

= =lim sup ( ; , ) .  

2. The strip-plate equation of heat transfer. Let Θ  be a bounded do-

main in d , where 3d ≤ , with 2C  boundary. We will study the following 
heat transfer equation of a thickness ( )2Z = δ = const  isotropic homogenous 

infinite strip-plate, which is averages by a integrals characteristic of tempera-
ture [4] 

 
2 2 2

2
2 2 2 2

1 1

q

T T T TT
aX Y c

∗ ∗ ∗
∂ ∂ ∂ ∂+ − = +
∂ ∂ ∂τ ∂τ

æ ,  (6) 

where T T X Y ∗= τ( , , ) , ∗ +τ ∈   (where +  denotes the interval [ )0 ∞, ), 

X Y ∈ Θ, , [ ]10X d∈ , , [ ]20Y d∈ , . 

In this equation we use the following notation: T  is the temperature, 

X Y Z, ,  are the space coordinates, ∗τ  is the time, qc  is the propagation of 

speed of the heat, 2 z

t
∗

α
=

λ δ
æ , t

v

a
c

λ
=  is the coefficient of thermal conductivity, 

vc  is the coefficient of volumetric heat contents, zα  is the coefficient of the 

given up the heat by flank, tλ  is the coefficient of heat conduction.  
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Now we assume the following initial conditions  

 0T = ,  0T
∗

∂ =
∂τ

 for  0∗τ = ,  (7) 

 0T = , 0T
Y

∂ =
∂

 for 0Y =   and 2Y d= . (8) 

We introduce in this equation the following notations 

 
x

Xx
k

= , 
y

Yy
k

= , 
z

Zz
k

= , 
k

∗

∗
τ

ττ =   (9) 

are dimensionless coordinates and time, where x y zk k k, ,  are scale coefficients, 

and assume that 

 
2

2
qc

a
β = ,  (10) 

 2
0∗ = + τ( )æ æ æ ,   (11) 

where τ( )æ  is a stationary ergodic stochastic process, whose samples are con-

tinuous functions with the probability one, 0æ  is a constant. 

If we assume, that 1xk d= , 2yk d=  in coordinates (9) and using notation 

(10) and (11) in equation (6) we obtain 

 2 2 2
02 0q xx q yy qT T c T c T c k Tττ τ+ β − − + + τ =( )( )æ ,  (12) 

where 

 
2

2
TTττ

∂=
∂τ

, TTτ
∂=
∂τ

, 
2

2xx
TT

x

∂=
∂

, 
2

2yy
TT

y

∂=
∂

, 

 1 20 0
x y

d d
x y

k k
   ∈ × = Ω   
   

( , ) , , ,    
z z

z
k k
δ δ ∈ − 

 
, ,   0τ ∈ +∞, )[ .  

3. Stochastic stability analysis. In this section we use the Kozin’s method 
to the equation (6). We investigate the stability of the trivial solutions of this 
equation. 

We set the initial conditions  

 0T = ,    0xx yyT T= =          for     x y ∈ ∂Ω( , ) .  (13) 

We assumed that τ( )æ  is the stationary ergodic process with the diffe-
rentiable realizations with probability 1. We shell study asymptotic stability of 
the trivial solution 0T Tτ= =  of equation (12) via a Lyapunov functional ap-

proach, using Kozin’s method [8]. 
We define the Lyapunov functional 

 
2 2 2

2 2 2
T T T T T TV Q T d
x y x yΩ

∂ ∂ ∂ ∂ ∂ ∂ = Ω ∂ ∂ ∂τ ∂ ∂ ∂τ∫ , , , , , , , 

where Q  is a quadratic form of its variables. 
We shell use the following approach. Upon expanding T x y τ( , , )  into its 

modes, we have 

 
1 1 1 1

nm nm
n m n m

T x y T x y W nx my
∞ ∞ ∞ ∞

= = = =

τ = τ = τ π π∑ ∑ ∑ ∑( , , ) ( , , ) ( ) sin ( ) sin ( ) .  (14) 

Substituting (14) into (12) yields the model equations 

  2 2 2 2 2 2
02 0nm nm nm q nmW W W c n m W+ β + π + π + τ + =  ( ) ( ) ( )( )æ æ , 

1 2 3n m = , , , , . 
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Using the methodology proposed by F. Kozin and C. M. Wu [10] we will 
deal with quadratic Lyapunov function for studying the almost sure stability 
properties of nmW τ( )  in the form 

 nm nm nmV W Wτ = ×( )  

 
2 2 2 2 2

02

1
nmq

nm

Wc n m
W

β + π + π + τ + β× ⋅
β 

( ) ( ) ( )( )æ æ
. 

Taking into account the properties 

 
2

2
2
mn

nm

T
n T

x

∂
π =

∂
( ) , 

2
2

2
mn

nm

T
m T

y

∂
π =

∂
( ) , 

we can apply conditions of the ortogonality of the functions nxπsin ( )  and 

mxπsin ( )  on 0 1,[ ]  for 1 2 3n m = , , , ,  in order to obtain the desired Lyapu-
nov functional  

 2 2 2 2 2 2 2 2 2 2
02 2 q x q y qV T TT T c T c T c T dτ τ

Ω

τ = + β + β + + + Ω∫( ) ( )æ .  (15)  

The time-derivative of the functional (15) along the solution of the 
equation (12) is given by:  

 2 2 2 2
02 2 q

dV
T T T T TT c

d ττ τ τ τ
Ω

τ = + + β + β + +τ ∫( ) ( ) ( )æ  

 2 2
q x x q y yc T T c T T dτ τ + + Ω ,  (16) 

where 

 
2

x
TT

xτ
∂=
∂ ∂τ

, x
TT
x

∂=
∂

, 
2

y
TT

yτ
∂=
∂ ∂τ

, y
TT
y

∂=
∂

. 

Substitution Tττ , determined by equation (12) into (16), yields the time-

derivative of the functional (15) in the form 

 2 2
dV

V U
d

τ = − β τ + τ
τ
( ) ( ) ( ) ,  (17) 

where new functional U τ( )has the form 

 2 2 3 2 2 2 2 2 2 2 2
02 2 q x q y qU T TT T c T c T c Tτ τ

Ω

τ = β + β + β + β + β + β −∫( ) æ  

 2 2 2 2 2 2
q q x q yc TT T c T c Tτ τ− τ − β − β − β −( )æ  

 2 2 2 2 2 2
0q qc T c T d− β τ − β Ω( )æ æ . (18) 

Using the dependencies of integrating by parts as for every pair of ele-
ments T  and Tτ : 

 x x xxT T d T T dτ τ
Ω Ω

Ω = − Ω∫ ∫ , 

 2
x xxT d TT d

Ω Ω

Ω = − Ω∫ ∫ ,  

 y x xxT T d T T dτ τ
Ω Ω

Ω = − Ω∫ ∫ , 

 2
y yyT d TT d

Ω Ω

Ω = − Ω∫ ∫ ,  
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and taking into account the fact, that the V τ( )  satisfies the initial conditions 
(13), we can introduce the functional U τ( )  in the form 

 2 2 2 2 2 2 22 2q qU c TT c T dτ
Ω

 τ = β − τ + β β − τ Ω ∫( ) ( ) ( )( ) ( )æ æ .  (19) 

We look for a function λ , which satisfies the following inequality 

 U Vτ ≤ λ τ( ) ( ) . (20) 

The function λ  is defined as a minimum of the ratio /U V  with respect 

to permissible functions T  and Tτ , which satisfy the initial conditions (13). 

Since the minimum is the particular case of the stationary point, we can ap-
ply the calculus of variations and we consider the variation problem 

0U Vδ − λ =( ) . After solving the equation of the variations we obtain 

 2 2 22 2 2qc T T T Tτ τ
Ω

 β − τ − λ + β δ + ∫ ( ) ( )( )æ  

 2 2 2 2 2 22 2 2q qc T c Tτ+ β − τ + β β − τ − ( ) ( )( ) ( )æ æ  

 2 2 2 2 2
02 4 2 2 2 0q xx q yy qT T c T c T c T v dτ − λ β + β − − + δ Ω =( )æ  .  (21) 

Taking into account the independence of variations appearing in integrals 
(18) we find that the square brackets in (21) are equal zero 

 2 2 22 2 2 0qc T T Tτβ − τ − λ + β =( ) ( )( )æ ,  (22) 

 2 2 22 2qc T Tτβ − τ + β −( ) ( )( )æ  

 2 2 2 2 2
02 4 2 2 2 0q xx q yy qT T c T c T c Tτ− λ β + β − − + =( )æ .  (23) 

We calculate Tτ  from equation (22) and substitute it into equation (23). 

Then we obtain a partial differential equation for the function T x y τ( , , ) : 

 
2 2 2

2 2 2
2 2

2 2
2

q
q

c T T
c T

β − τ − λβ 
β − τ + β − λ 

( )
( )

( )
( )

æ
æ   

 
2 2 22 2

2
2

qc T Tβ − τ − λβ
− λ β + λ

( )( )æ
 

 2 2 2 2 2
04 2 2 2 0q xx q yy qT c T c T c T


+ β − − − =


æ . (24) 

It is easy to notice, that the n -order approximation of the solution of (24) 
in the form 

 
1 1

nm
n m

T T nx my
∞ ∞

= =

= τ π π∑ ∑ ( ) sin ( ) sin ( )   (25) 

satisfies initial conditions (13). Substituting (25) into equation (24), we obtain 
an algebraic equation with respect to the variable λ  for every pair n m( , ) . 

We denote these variables by nmλ . As a function λ  we select the maximum 

of variables nmλ , which satisfy inequality (20).  

Finally the function λ  has the form 

 
2 2 2

1/22 2 2 2 21 2
0

2

2

q

n m
q

c

c n m=

 β − τ λ =  
 β − π + π +   , , ,

( )
max

( ) ( )( )
æ

æ
.  (26) 
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After substituting inequality (20) to equation (17), we obtain the differen-
tial inequality of functional V τ( ) . Solving this inequality, we obtain the upper 
estimation of the functional V τ( )  (lemma 2.1 [3]) 

 
0

10 2V V s ds
τ  τ ≤ − β − λ τ  τ  
∫( ) ( ) exp ( ) . 

If τ( )æ  is an ergodic and stationary process and we replace the mean va-
lue of the temperature by the corresponding mean value of the set of realiza-
tions, we obtain the condition of almost sure asymptotic stability with respect 
to the following measure of temperature 

 T V= ,  (27) 

where τ → ∞  in the form Eβ ≥ λ[ ] . 
To derive the sufficient conditions of the almost sure instability we look 

for a function η , which satisfies the inequality U Vτ ≥ η τ( ) ( ) . Watching the 

derivation of the function can check it λ . The function η  equals to the mini-

mum of nmλ  given by (26) and suitable estimation of the functional V τ( )  has 

the form 

 
0

10 2V V s ds
τ  τ ≥ η − β τ  τ  
∫( ) ( ) exp ( ) . 

The condition of almost sure asymptotic instability for the stationary and 
ergodic process has the form 

 Eβ ≤ η[ ] . 

The obtained results can be summarized in the following criteria. 

Criterion 1. The trivial solution of the partial differential equation (12) is 
almost sure asymptotic stable with respect to the norm (27) if the following 
conditions are satisfied  

(i) process τ( )æ  is stationary and ergodic; 

(ii) Eβ ≥ λ[ ] , 
where 

 
2 2 2

1/22 2 2 2 21 2
0

2

2

q

n m
q

c

c n m=

 β − τ λ =  
 β − π + π +   , , ,

( )
max

( ) ( )( )
æ

æ
. 

Criterion 2. The solution of the partial differential equation (12) is almost 
sure asymptotic unstable with respect to the norm (27) if the following condi-
tions are satisfied  

i) process τ( )æ  is stationary and ergodic; 

(ii) Eβ ≤ η[ ] , 
where 

 
2 2 2

1/22 2 2 2 21 2
0

2

2

q

n m
q

c

c n m=

 β − τ η =  
 β − π + π +   

, , ,

( )
min

( ) ( )( )
æ

æ
. 

Example. We consider a particular case of system (6). 

If we assumed that 
2

2
T

X

∂
∂

 is equal zero in equation (6), then this equation 

we can rewrite in the form 
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2 2

2
2 2 2

1 1

q

T T TT
aY c

∗ ∗ ∗
∂ ∂ ∂− = +
∂ ∂τ ∂τ

æ ,  (28) 

where T T Y ∗= τ( , ) , ∗ +τ ∈   (where +  denotes the interval 0 ∞, )[ ), Y ∈ Θ .  
Now we assume the following initial conditions  

 0T = , 0T
∗

∂ =
∂τ

 for   0∗τ = ,  

 0T = , 0T
Y

∂ =
∂

 for  20Y d∈ ( , ) . 

Now we introduce the following notations 

 
y

Yy
k

= , 
z

Zz
k

= , 
k

∗

τ

ττ =     (29) 

are dimensionless coordinates and time, where y zk k,  are scale coefficients, 

like in equation (6). 
Using notation (10), (11) and (29) in equation (28) we obtain 

 2 2
02 0q yy qT T c T c k Tττ τ+ β − + + τ =( ( ))æ   (30) 

where 

 
2

2
TTττ

∂=
∂τ

, TTτ
∂=
∂τ

, 
2

2yy
TT

y

∂=
∂

, 

 20y d∈ = Ω( , ) ,  
z z

z
k k

 δ δ∈ − 
 

, , 0τ ∈ +∞, )[ ,  

with the simplified initial conditions (13). 
Now we shell look for the Lyapunov functional using the method 

describe above as defined in (15). 
The functionals V τ( )  and U τ( )  for equation (30) have the form as follows 

 2 2 2 2 2 2 2 2
02 2 q y qV T TT T c T c T dτ τ

Ω

τ = + β + β + + Ω∫( ) ( )æ , 

 2 2 2 2 2 2 22 2q qU c TT c T dτ
Ω

 τ = β − τ + β β − τ Ω ∫( ) ( ) ( )( ) ( )æ æ . 

Again we wish to determine the λ  so that satisfies the inequality  

 U Vτ ≤ λ τ( ) ( )   
and we apply the variational calculus to solve the problem 

 0U Vδ − λ =( ) .  (31) 

After applying the straightforward computations, we find the sequence 
of mλ  that satisfies (31) to be 

 
2 2 2

1/22 2 2 21 2
0

2

2

q

n m
q

c

c m=

 β − τ λ =  
β − π +  , , ,

( )
max

( )( )

æ

æ[ ]
.  

4. Conclusions. The major conclusions are that the Lyapunov’s method is 
an effective tool of solving the stability problem of strip-plate. The explicit 
criteria developed in the paper define the stability region in terms of the 
excitation process and physical characteristic of strip-plate. The analytical for-
mulas defining the stability regions are obtained using the calculus of varia-
tions.  
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СТОХАСТИЧНА СТАБІЛЬНІСТЬ ДЕЯКОГО КЛАСУ ДИФЕРЕНЦІАЛЬНИХ 
РІВНЯНЬ ТЕРМОПРУЖНОСТІ У ЧАСТИННИХ ПОХІДНИХ 
 
Âèâåäåíî óìîâè ñòîõàñòè÷íî¿ ñòàá³ëüíîñò³ äëÿ ð³âíÿííÿ òåðìîïðóæíîñò³ äëÿ 
òîíêî¿ ïëàñòèíêè. Äëÿ öüîãî çã³äíî ç ìåòîäîì Êîçiíà âèêîðèñòàíî ôóíêö³îíàë 
Ëÿïóíîâà. ßê ïðèêëàä âñòàíîâëåíî óìîâè ñòîõàñòè÷íî¿ ñòàá³ëüíîñò³ ð³âíÿííÿ 
òåðìîïðóæíîñò³ äëÿ íàï³âíåñê³í÷åííîãî ñòåðæíÿ. 
 
СТОХАСТИЧЕСКАЯ СТАБИЛЬНОСТЬ НЕКОТОРОГО КЛАССА ДИФФЕРЕНЦИАЛЬНЫХ 
УРАВНЕНИЙ ТЕРМОУПРУГОСТИ В ЧАСТНЫХ ПРОИЗВОДНЫХ 
 
Âûâåäåíû óñëîâèÿ ñòîõàñòè÷åñêîé ñòàáèëüíîñòè äëÿ óðàâíåíèé òåðìîóïðóãîñòè 
äëÿ òîíêîé ïëàñòèíêè. Äëÿ ýòîãî ñîãëàñíî ìåòîäó Êîçèíà èñïîëüçîâàí ôóíêöèî-
íàë Ëÿïóíîâà. Â êà÷åñòâå ïðèìåðà óñòàíîâëåíû óñëîâèÿ ñòîõàñòè÷åñêîé ñòà-
áèëüíîñòè óðàâíåíèÿ òåðìîóïðóãîñòè äëÿ ïîëóáåñêîíå÷íîãî ñòåðæíÿ. 
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