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STOCHASTIC STABILITY OF A CLASS OF PARTIAL DIFFERENTIAL
EQUATIONS OF THERMOELASTICITY

An example of stability analysis of a class of partial differential equations (in
terms of Lyapunov functional) is presented. Applying Kozin’s method to construc-
tion of Lyapunov functional the sufficient conditions of stochastic stability of the
heat transfer in a strip-plate are established.

1. Introduction. Considerable progress has been made over the last four
decades, in the study of the problem of the stochastic stability of partial diffe-
rential equations. It has been initiated by the J. C. Samuels and Yu. M. Erin-
ger [12] and studies by mathematicians and engineers in the vibration analysis
of beams, plates, shells and heat transfer problems. Two basic models with
stochastic parametric excitations have been developed in the literature, name-
ly with stationary ergodic processes and white noise processes. For the models
with stationary ergodic processes the stability analysis has been initiated by T.
K. Caughey and A. H. Gray (jr) [6] and developed by F. Kozin [8, 9], F. Kozin
and C. M. Wu [10]. A. Tylikowski has obtained several interesting results [16, 17].

The first work for the models with white noise processes has been pub-
lished by U. G. Haussmann [7] who applied the obtained results to the study
of a heat-transfer problem. T. Caraballo, K. Liu, and X. Mao [5, 11] genera-
lized these results for instance. The new criteria of stability for string, stick
and plate models with parametric white noise excitations have been obtain by
A. Tylikowski [14, 15].

In this paper we will deal with problem of stability of the partial diffe-
rential equation, which describe the heat-transfer in strip-plate. We use the
equation of motion derived by Yu. M. Kolyano, Ya. S. Podstryhacz [4] and we
assume that the parametric excitations are in the form of stationary ergodic
process. We apply the Kozin’s method to determine sufficient conditions of
almost sure asymptotic stability.

2. Mathematical preliminaries. The common stability properties of sto-
chastic systems that have been studied in the literature have generally been
related to Lyapunov stability [13]. Recognizing that stability in the Lyapunov
sense is merely a uniform convergence, which respect to the initial conditions,
various concepts of stability for stochastic systems can be immediately defined
by invoking one of the usual modes of probability theory. That is, for instan-
ce, convergence in probability and almost sure convergence.

In that follows, u(t;x,,t,) will denote the n-dimensional vector solution

at time t, with initial state x, at time t,, |u| will denote a suitable norm,

0
such as an absolute value or Euclides norm, and we shell be testing the stabi-
lity of the equilibrium solution u = 0 of the partial differential equations

U _ Bz t) =1, M (1)
5 - Rwxt), i=1,.

A (u,x,t) =0, {t:t>0}, k=1..,M,. (2)

That system has the following distinctive marks [14]:

1) occupies some region (coherent, open set) Q c RY is N -dimensional
Euclidean space with a boundary BN =60, x = [xl,...,xN] e RY;
2) describes the set M of the function u(x,t) = [ul(x,t),...,uM(x, t)], which

belongs to a function space of X(Q) = X, which is called phase space and
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satisfies the system of partial differential equations (1), (2) in region
CNM*l = QO x A« RV, where F, and A, are the differential operators,
which are described by continuous, differentiable functions and related to

spatial values. The space X of the points may be the set of variable
parameters, which characterize the condition of the system;

3) the function wu(x,t) which characterize the system are assumed to take
the values

uy = uy(x,ty) € X, (Q) o X(Q) (3)

0

in the plane Qx {t =0} c RY*! (initial conditions) and the boundary
conditions

u, =y (x,t) € X,(Q) > X(Q). (4)

In stochastic case instead of equation (1) we consider the following sto-
chastic differential equation

ou
ot
where o is an element of probability space (I, B, P). Similarly, the initial and
boundary conditions are determined [14].
In this paper we will use the following definitions of stochastic stability
[1, 2, 17].
Definition 1. (Almost Sure Lyapunov Stability). The equilibrium solution
of system (5) is said to be almost surely stable if

: =F;(u7x7t’0))’ i=1,...,n, (5)

P{ lim sup ||u(t;x0,t0)|| = 0} =1.

R

Definition 2. (Almost Sure Asymptotic Stability). The equilibrium solution
of system (5) is said to be almost surely asymptotically stable if definition 1
holds and

P{ lim sup ||u(t; xo,to)” =0 : =1.
T—w t>T

2. The strip-plate equation of heat transfer. Let ® be a bounded do-
main in R?, where d < 3, with C? boundary. We will study the following
heat transfer equation of a thickness (Z = 23 = const) isotropic homogenous
infinite strip-plate, which is averages by a integrals characteristic of tempera-
ture [4]

2 2 2
OT &1 _op 10T 10T
0X* oY

(6)

where T =T(X,Y,t"), v €R" (where R" denotes the interval [0,%)),
X, YeO, Xe [O,dl], Y € [0,d2].
In this equation we use the following notation: T is the temperature,

X,Y,Z are the space coordinates, t* is the time, ¢, is the propagation of

aZ

speed of the heat, aez = s a = —L is the coefficient of thermal conductivity,
t Cv

c, is the coefficient of volumetric heat contents, o, is the coefficient of the

given up the heat by flank, A, is the coefficient of heat conduction.
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Now we assume the following initial conditions

T-0, 9T _ for 1" =0, ™
ot
T-0, aT _y for Y=0 and Y=d,. 8)
oY 2
We introduce in this equation the following notations
X Y Z T
x=—, Yy=-—, Z2=—, T:—* (9)
k., Icy k, K
are dimensionless coordinates and time, where kx,ky,kz are scale coefficients,
and assume that
2
26 =L, (10)
a
x2 =, + (1), (11)

where ®(t) is a stationary ergodic stochastic process, whose samples are con-

tinuous functions with the probability one, 2, is a constant.
If we assume, that k, =d,, ky =d, in coordinates (9) and using notation
(10) and (11) in equation (6) we obtain
T, +2BT, - c;T,, — c.T,, +c(k, + ()T =0, (12)
where

3 _oT 0T
T, - L2 T‘E_E’ Txx axz

ol1 ol2 3 5 &
(x,y)e(o,k—)x(O,E)—Q, ze( k—z,z), T € [0, +0).

x

3. Stochastic stability analysis. In this section we use the Kozin’s method
to the equation (6). We investigate the stability of the trivial solutions of this
equation.

We set the initial conditions

T=0, T,=T,=0 for  (x,y) € 0Q. (13)

We assumed that ®(t) is the stationary ergodic process with the diffe-

rentiable realizations with probability 1. We shell study asymptotic stability of
the trivial solution T =T, =0 of equation (12) via a Lyapunov functional ap-

proach, using Kozin’s method [8].
We define the Lyapunov functional

v=[|1%, & 25 o2 Of dQ,
JZQ( ox’ oy ox? oy? Ot 8rzj

where Q is a quadratic form of its variables.
We shell use the following approach. Upon expanding T(x,y,t) into its
modes, we have

T(x,y,7) = i i T, (x,y1)= i i W, (1) sin (mnx) sin (tmy). (14)

n=1m=1 n=1m=1

Substituting (14) into (12) yields the model equations
W2, +2BW,, W, +c2((nn)” + (xm)* + (1) + ()W, =0,

n,m=123,....
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Using the methodology proposed by F. Kozin and C. M. Wu [10] we will
deal with quadratic Lyapunov function for studying the almost sure stability

properties of W, (1) in the form

n

2[32 + cz ((nn)Z +(mm)? + 2%(1) + aeo) B H ) H an
an

X .
B 1
Taking into account the properties
o°T, o*T
2 2
(nn) Tnm = axgm ’ (Tcm) Tnm = ay“;" ’

we can apply conditions of the ortogonality of the functions sin(nnx) and
sin (mmx) on [0,1] for n,m =1,2,3,... in order to obtain the desired Lyapu-
nov functional
V(r) = j (T? + 2BTT, + 2B>T* + chi + czT; + c§x§T2) dQ. (15)
Q

The time-derivative of the functional (15) along the solution of the
equation (12) is given by:

dv(x)
S =2 [T (T + 1)+ BTP + TT, (28 + chef) +
Q
2 2
+ ClT,T,, +c.T,T, |dQ, (16)
where
_oT r _oT r 0T r 0T
*T o Qxot’ *r ox’ vT o oyor’ voooy’

Substitution T _, determined by equation (12) into (16), yields the time-
derivative of the functional (15) in the form
dV (1)
dt
where new functional U(t)has the form
U() = [ [BT? + 2B°TT, + 2B°T + B2T? + Be2T2 + el T -
Q
2 2 2m2 22
—c2()TT, - BT, - chTx - chTy -

= - 2BV (1) + 2U(1), 17)

- [3c§ae2(‘t)T2 - BcémﬁTz]dQ. (18)

Using the dependencies of integrating by parts as for every pair of ele-
ments T and T,:

[r,1, d0=-[T,T do,
Q Q
[r2do=-[TT,, dO,

Q

Q
jTT dQ:—jT T dQ,
Q Q

Yy xt xxTT

jTde:-jTTyde,
Q Q
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and taking into account the fact, that the V(t) satisfies the initial conditions
(13), we can introduce the functional U(t) in the form

Ux) = j [(2B” - c22® (1)) TT, +B (2B - (1) T* ] d2. (19)
Q
We look for a function A, which satisfies the following inequality
U(t) < AV(1). (20)
The function A is defined as a minimum of the ratio U/V with respect
to permissible functions T and T, , which satisfy the initial conditions (13).

Since the minimum is the particular case of the stationary point, we can ap-
ply the calculus of wvariations and we consider the variation problem
d(U —AV) = 0. After solving the equation of the variations we obtain

| {[(2[32 — %2 (1))T — M2T, + 2BT) ]8T, +
Q

+[(2B* - 2 (@) T, + 2B (2B° — 22 (1)) T —
— M2BT, +4B°T — 22T, — 22T, +2c2a;T) | &;} do=0. (21

Taking into account the independence of variations appearing in integrals
(18) we find that the square brackets in (21) are equal zero

(2p* - cjaeQ(r)) T — AT, +2BT) =0, (22)
(2p% - cZa®(1))(T, + 2BT) -
- M2BT, +4p°T - 2¢2T,, — 2¢.T,, +2¢22(T) = 0. (23)

We calculate T, from equation (22) and substitute it into equation (23).

Then we obtain a partial differential equation for the function T(x,y,1):

2% — c22*(1))T — 2ABT
(282 - C(22932(T))|:( p* —c 2(;)) p N ZBT} B
(28% - csaez(r))T — 2ABT
-\ [ZB o +
+4B°T - 2¢2T, , - 2T, - 20596[2)T} =0. (24)

It is easy to notice, that the m -order approximation of the solution of (24)
in the form

T = i i T,,, () sin (mnx) sin (mtmy) (25)
=l m=1

satisfies initial conditions (13). Substituting (25) into equation (24), we obtain
an algebraic equation with respect to the variable A for every pair (n,m).

We denote these variables by A, . As a function A we select the maximum
of variables A _ , which satisfy inequality (20).
Finally the function A has the form

2p% — cézEZ(T)
A= nlj)z( 2 2 2 2 2 )2 [
nm=12,.. 2(3 - c [(nn)* + (nm)?* + xoD

(26)
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After substituting inequality (20) to equation (17), we obtain the differen-
tial inequality of functional V(1). Solving this inequality, we obtain the upper
estimation of the functional V(1) (lemma 2.1 [3])

V(1) < V(0) exp [— 2(3 —%J.k(s) dsj r}.
0

If =(t) is an ergodic and stationary process and we replace the mean va-
lue of the temperature by the corresponding mean value of the set of realiza-
tions, we obtain the condition of almost sure asymptotic stability with respect
to the following measure of temperature

T =4V, 27)

where 1 — o in the form B > E[A].

To derive the sufficient conditions of the almost sure instability we look
for a function m, which satisfies the inequality U(t) 2 nV(t). Watching the

derivation of the function can check it A. The function n equals to the mini-
mum of A given by (26) and suitable estimation of the functional V(t) has

the form
V(t) > V(0) exp [2 (% [ n(syds - Bj r} .
0

The condition of almost sure asymptotic instability for the stationary and
ergodic process has the form

B<E[n.

The obtained results can be summarized in the following criteria.

Criterion 1. The trivial solution of the partial differential equation (12) is
almost sure asymptotic stable with respect to the norm (27) if the following
conditions are satisfied

(1) process x(t) is stationary and ergodic;
(@) B=E[M,
where

2p* cgaez(r)
A= max 2(p? - c2 2 2 22
n,m=12... | 2( B - ¢, |:(TETL) + (mm) +anD

Criterion 2. The solution of the partial differential equation (12) is almost
sure asymptotic unstable with respect to the norm (27) if the following condi-
tions are satisfied

1)  process x(1) is stationary and ergodic;

(i) B<EIn],
where

. 2p% — 0(22962(1)
n= min .
n,m=12,.. 2([32 - ci [(nn)2 + (mm)? + ae[z)] )1/2
Example. We consider a particular case of system (6).

2
If we assumed that —2 ’IZ‘ is equal zero in equation (6), then this equation
X

we can rewrite in the form
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2 2
OT oy LT L OT (28)
10)4 a ot ¢, ot
where T = T(Y,1"), ©° € R" (where R* denotes the interval [0,)), Y € ©.
Now we assume the following initial conditions

r-0, ZL_y for 1 =0,
ot
T=0, %:0 for Y e (0,d,).
Now we introduce the following notations
Y Z T
Yy=-—, z=—, T=— (29)
ky k, k.

are dimensionless coordinates and time, where ky,kz are scale coefficients,

like in equation (6).
Using notation (10), (11) and (29) in equation (28) we obtain

T, +2BT, —c.T,, +c2(ky +2(1)T =0 (30)
where
_o'T _aT _o'T
Tt‘t_ﬁ’ T‘;_Ev Tyy_g,
y € (0,d,)) =Q, ze(—k—i,%j, T € [0, +0),

with the simplified initial conditions (13).

Now we shell look for the Lyapunov functional using the method
describe above as defined in (15).

The functionals V(1) and U(t) for equation (30) have the form as follows

V() = [ (T? + 2BTT, + 2p°T* + c2T7 + c2aT) dQ,
Q
U(r) = [[(2B? - c2x(0) TT, + B(2p* - c2a*(1) T |dQ.
Q
Again we wish to determine the A so that satisfies the inequality

U(t) < AV (1)
and we apply the variational calculus to solve the problem
S(U-AV)=0. (31)

After applying the straightforward computations, we find the sequence
of A, that satisfies (31) to be

. 2B - cia’(1)
T mets. 2(p* - cé [(rm)® + 32[2)])1/2 .

4. Conclusions. The major conclusions are that the Lyapunov’s method is
an effective tool of solving the stability problem of strip-plate. The explicit
criteria developed in the paper define the stability region in terms of the
excitation process and physical characteristic of strip-plate. The analytical for-
mulas defining the stability regions are obtained using the calculus of varia-
tions.
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CTOXACTUYHA CTABUIbHICTb AEAKOIO KNACY AU®EPEHUIANIBHUX
PIBHAHb TEPMOIPY>XHOCTI Y YACTUHHUX MOXIAHUX

Bugedeno ymosu cmoxacmuuHol cmadinbHOCMi O0As PIBHAHHS MepMonpyxrcHocmi 0as
monkol naacmunxu. Jas yvozo 32100 3 memodom Koszina suxopucmaro GyHKyioHas
Jlanynosa. fAx npuxaad 6cMaHO8AEHO YMOBU CMOXACTNUUHOL CMADINBHOCMNT PIBHAHHS
MePMONPYHHOCME O HANIBHECKIHUEHHO20 CMePHCHI.

CTOXACTUYECKAA CTABUITIbHOCTb HEKOTOPOTI O KIACCA AN®PEPEHLWAIBbHBIX
YPABHEHUU TEPMOYIMNPYIOCTU B YACTHbIX MPOU3BOAHbIX

Buwigedensl ycaosus cmoxacmuueckoll cmadbuabhocmu 048 YpasHenull mepmoynpyzocmu
Oasi monkoll naacmurru. Jas amozo cozaacno memody Kosuna ucnoav3osar GyHKYUO-
Haa Jlanyroea. B xauecmee mpumepa YCMAHOBAEHbL YCAOBUSL CMOXACTNUULECKOU CMaA-
OUABHOCTMU YPABHEHUS NEPMOYNDPY20CMU 0As NOAYOECKOHEUHOZ0 CMEPHCHI.
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