© 2009 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 61.46.Bc, 81.07.Wx, 81.16.Hc, 81.20.Fw, 82.45.Jn, 82.65.+r, 82.70.Gg

Новый эффективный метод темплатного синтеза мезопористого Zr, Si-сорбента

С. И. Трофименко, Н. Н. Цыба, Н. А. Ярошенко

Институт сорбции и проблем эндоэкологии НАН Украины, ул. Генерала Наумова, 13, 03680, ГСП, Киев, Украина

Оксиды переходных металлов играют важную роль как промышленные катализаторы и подложки для катализаторов, но их удельные поверхности обычно малы, а структура пор — неопределенная. Материалы типа MCM-41 лишены вышеуказанных недостатков. В данной работе показана возможность разработки темплатным способом эффективного мезопористого Zr, Si-материала на основе дешевых реагентов. Синтезированные материалы обладают высокой удельной поверхностью, определенной структурой пор и каталитической активностью.

Оксиди перехідних металів відіграють важливу роль як промислові каталізатори і підкладки для каталізаторів, але їх питомі поверхні зазвичай малі, а структура пор — невизначена. Матеріяли типу MCM-41 позбавлені цих недоліків. В даній роботі показано можливість розроблення темплатним способом ефективного мезопористого Zr, Si-матеріялу з використанням дешевих реаґентів. Синтезовані матеріяли характеризуються високою питомою поверхнею, певною структурою пор та каталітичною активністю.

Transitional-metals oxides play an important role as industrial catalysts and substrates for catalysts, but their specific surfaces are usually small, and structure of pores is indefinite. The materials of MSM-41 type do not possess these disadvantages. The possibility to develop the effective mesoporous Zr, Si-materials on the basis of cheap reagents by template method is presented in this paper. The synthesized materials have high specific surface, particular porous structure, and catalytic activity.

Ключевые слова: темплатный синтез, мезопористый сорбент, оксиды циркония и кремния, промышленные ПАВ.

(Получено 25 мая 2008 г.)

887

Оксиды переходных металлов играют важную роль как промышленные катализаторы и подложки для катализаторов, но их удельные поверхности обычно малы, а структура пор — неопределенная. Поэтому делается много попыток получить материалы типа MCM-41, которые лишены вышеуказанных недостатков и которые содержали бы в структуре неорганического каркаса один или несколько оксидов переходных металлов [1–3].

Обычно для таких темплатных синтезов используют в качестве источника кремнезема тетраэтилортосиликат (ТЭОС) или силикат натрия, а для оксидов переходных металлов — алкоксиды необходимых металлов или их неорганические соли (сульфаты, хлориды,

№ синтеза,	№ обр.	Условия гидротермальной и термической обработок	РФА		$S_{ m yg.}$, м $^2/г$	
соотношение Zr:Si, моно- или битемплат			d ₁₀₀ ,	Ι	по Ar	по N ₂ уравн. ВЕТ
1	2	3	4	5	6	7
№ 1, 1:2 монотемплат	$rac{1}{2}$	M.p., 80°, +530° Исх. +600°	_	_	680 500	_
№ 2, 1:2 битемплат	${3 \atop {4} \atop {5}}$	$egin{array}{llllllllllllllllllllllllllllllllllll$			1050 880 900	$750\\672\\$
№ 3, 1:2 битемплат	${6 \over 7}$	${ m H_{2}O,\ 80^{\circ},\ +530^{\circ}}\ { m Mcx.\ +600^{\circ}}$	_	_	760 890	$\frac{-}{350}$
№ 4, 1:5, монотемплат	8 9 10 11	$egin{array}{lll} { m H}^+, 80^\circ, +700^\circ \ { m H}_2{ m O}, 80^\circ, +710^\circ \ { m M.p.}, 80^\circ, +600^\circ \ { m Mcx}. +600^\circ \end{array}$	47,8 42,1 46,5 42,0	$6800 \\ 7150 \\ 8400 \\ 4300$	880 790 950 740	
№ 5, 1:9 монотемплат	$12 \\ 13 \\ 14 \\ 15$	М.р. 80°, +600° + шир. обл. Исх. +600° Н ₂ О, 80° +710° М.р. 80° +710°	$\begin{array}{c} 41,1\\ 40,2\\ 38,4\\ 38,4 \end{array}$	$8700 \\ 9300 \\ 7400 \\ 7500$	960 980 690 680	
№ 6, 1:5 монотемплат	16 17 18	H ₂ O, 80° +600° Исх. + 600° + шир. обл. М.р. 80° +590°	$43,1 \\ 41,0 \\ 43,1$	$10000 \\ 9400 \\ 4300$	1070 950 1000	 671
№ 7, 1:5 монотемплат	19 20 21	H ₂ O, 80° +600° М.р. 80° +600° + шир. обл. Исх. +600° + шир. обл.	47,7 47,8 41,0	$12000 \\ 8500 \\ 6000$	$1000 \\ 1010 \\ 740$	$\frac{-}{545}$
№ 6, 100% SiO ₂ , монотемплат, контрольный	22 23	Исх. +600° H ₂ O, 80° + 600°	$44,2 \\ 46$	$\begin{array}{c} 11600\\ 14000 \end{array}$	$\begin{array}{c} 1100\\ 1300 \end{array}$	_

ТАБЛИЦА 1. Структурная характеристика Si, Zr-содержащих мезопористых образцов.

* — это означает, что на дифрактограмме не было рефлекса.

888

нитраты) [4–6]. В темплатном синтезе материалов типа MCM-41 чаще используют катионные длиннорадикальные поверхностноактивные вещества (ПАВ) на основе четвертичного аммония, но другие представители этого класса также высокоэффективны [7–8]. Менее исследован темплатный синтез на основе неионогенных и анионных ПАВ [9, 10]. В последние годы опубликованы работы, в которых вместо дорогих индивидуальных мицеллообразующих ПАВ применяли узкие фракции промышленных мицеллообразующих ПАВ, что значительно удешевляет стоимость конечного материала [8, 11].

В данной работе показана возможность разработки эффективного мезопористого Zr, Si-материала на основе дешевых реагентов: силиката натрия, хлористого цирконила и промышленной фракции ПАВ. Свежесинтезированный материал разделялся на несколько частей. Одна часть (в табл. 1 она обозначена «исх.») прокаливалась без гидротермальной (ГТ) обработки, а другие подвергались ГТ обработке: в дистиллированной воде, в подкисленной (H⁺) и в маточном растворе (м.р.). Термообработку проводили при таких температурах: 430, 530, 600, 700°С. Характеристика конечного мезопористого Zr,Si-материала представлена в таблице 1.

Из данных по РФА и $S_{\rm yg.}$ видно, что оптимальная температура прокаливания 600°С. Величины $S_{\rm yg.}$ этих образцов конкурентны с таковыми, опубликованными в англоязычных журналах, где приводятся данные для кремний, цирконий-содержащих мезопористых сорбентов, синтезированных на основе TEOS'а и алкоксидов циркония.

Все образцы аморфные, это видно из приведенных дифрактограмм, рис. Для образцов, на дифрактограммах которых не было рефлекса, в табл. 1 поставлен прочерк. Из таблицы видно, что по разрабатываемому методу можно получить кремний, цирконий-содержащие материалы при различном молярном соотношении оксидов циркония и кремния в неорганическом каркасе. Многие из образцов определялись по РФА также в области дальних углов (рис.; в табл. 1 обозначено: + шир. обл.). Видно, что оксид циркония не выделяется в конечном материале в отдельную фазу, а встраивается в результате многостадийных преобразований в неорганический каркас.

Из данных по изотермам адсорбции-десорбции азота мезопористыми образцами определен средний диаметр пор (от 20 до 60 Å).

Опыты по гидролитической устойчивости Zr, Si-образцов (в ки-

ТАБЛИЦА 2. Содержание циркония в мезопористых образцах. Номера

№ образца		1	19	15
Zr, %	теоретически	31	17	10
	определено экспериментально	24	15	10

Рис. Дифрактограммы мезопористых образцов № 17 и 21 в малых и дальних углах. Номера образцов соответствуют таковым в табл. 1.

слой среде — pH 2, а в щелочной — pH 10) показали, что конечный кальцинированный материал достаточно гидролитически устойчив. Повторные измерения величин их удельной поверхности уменьшились немного (примерно на 100 м²/г), а дифрактограммы практически не изменились.

выводы

Показана возможность разработки эффективного мезопористого Zr, Si-материала на основе дешевых реагентов: силиката натрия, хлористого цирконила и промышленной фракции ПАВ. Этот материал обладает высокой удельной поверхностью (до 900 м²/г), каталитически активен, гидролитически устойчив.

Его стоимость в ~ 100 раз меньше аналогичного материала, синтезированного с использованием TEOS'а и индивидуального мицеллообразующего ПАВ.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. Q. Huo, D. I. Margolese, U. Ciesla et al., Chem. Mater., 6: 1176 (1994).
- 2. Q. Huo, D. I. Margolese, U. Ciesla et al., Nature, 368: 317 (1994).

- 3. M. S. Wong and J. Y. Ying, Chem. Mater., 10: 2067 (1998).
- 4. S. Lee, B.-C. Lee, K.-Y. Lee, S.-H. Lee, and M. Iwamoto, *Environmental Technology*, 28: 785 (2007).
- 5. L. F. Chen, L. E. Noreca, J. Navarrete, and J. A. Wang, *Mat. Chem. and Phys.*, 97: 236 (2006).
- 6. L. Fu-xiang, Z. Xiang-di, L. Rui-feng, and X. Ke-chang, J. Fuel Chem. and Technol, 32: 471 (2004).
- 7. D. Khushalani, A. Kuperman, N. Coombs, and G. A. Ozin, *Chem. Mater.*, No. 8: 2188 (1996).
- 8. Н. А. Ярошенко, А. В. Швец, В. В. Стрелко, В. Г. Ильин, Коллоид. журн., **65**: 563 (2003).
- 9. D. Zhao, J. Feng, Q. Huo et al., Science, 279: 548 (1998).
- 10. A. S. Kovalenko, N. A. Yaroshenko, V. V. Strelko, and V. G. Ilyin, *Adsorption Science&Technology*, **20**: 433 (2002).
- 11. Н. А. Ярошенко, В. Г. Ильин, Журн. прикл. химии, 77: 1787 (2004).