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The average coefficient of light scattering by surface fractal structures is cal-
culated within the scope of the Kirchhoff’s method. Two-dimensional band-
limited Weierstrass function is used to simulate a scattering surface. On the
basis of numerical calculations of average scattering coefficient, the scattering
indicatrixes for various surfaces and incidence angles are calculated. The
analysis of the indicatrixes leads to the following conclusions: the scattering is
symmetric about the incidence plane; with the increase of surface calibration
degree, the scattering pattern becomes more complicated; the greatest inten-
sity of the scattered wave is observed along the mirror direction; there are
other directions, in which the intensity bursts are observed.

B pamkax Kupxrogdosoi meTonu po3paxoBaHo cepeaHiit KoedilieHT posciau-
HA CBiTJIa MOBepXHEBUMU (PPaKTAJIbHUMU CTPYKTypamu. [Jid MoAesloBaHHA
po3ciroBaSIbHOI TIOBEPXHi BUKOPUCTOBYBAJIACS JBOBUMipHA, 00MeKeHa CMYTOI0
BeiiepmiTpaccoBa ¢pyrKIig. BukoHaHO UnCceJbH]I PO3PaxXyHKU CcepefHBOI'0 KO-
edimienTa posciguuA Ta MOOYJOBaHO iHAMKATPUCH PO3CiAHHSA OJA Pi3HUX THU-
IIiB IIOBEPXOHb Ta KYTiB MaAiHHsa. AHaJIiza iHAUKATPUC PO3CiAHHS IPU3BOIUTH
IO HACTYIIHUX BUCHOBKIiB: PO3CiIHHA € CUMETPUYHUM BiTHOCHO IJIOIIIMHU IIa-
IiHHS; 31 30iIBIIIEHHAM CTYIIeHA KaJIiOpyBaHHS ITOBEPXHi KapTUHA PO3CiAHHA
YCKJIaIHIOETHCS; HAMbiIbITa iHTeHCUBHICTD PO3CiAHOI XBUJIL cIiocTepiraeTbesa
B [[3ePKaJIbHOMY HaNIPAMKY i, KpiM TOr0, iCHyIOTh HAIPAMKU, B AKUX CIIOCTe-
pirarmTbCs CIJIECKY iHTeHCHUBHOCTH.

B pamkax metroma Kupxroda paccuuran cpegHuii KoadGUIIMEHT PaCCEeTHUA
CBeTa MOBEPXHOCTHBIMU (PPAKTAJIbHLIMU CTPYKTypaMu. J[Jig MomeaupoBaHUA
paccenBarOIell TOBEPXHOCTHU MCIIOJIB30BaJIAaCh IBYMEPHAA, OTPAHNUYEHHAA II0-
Jocoii pyHKIuA Beliepmmrpacca. IIpousBeeHsl YncIeHHBIE PACUETEI CPEIHEro
Koo GUIIMEeHTa pacCesHUs U IOCTPOEHBI MHANKATPUCHI PACCeAHUA IS Pas-
JIMYHBLIX IIOBEPXHOCTEH W YIJIOB IMajeHus. AHaln3 WHAWKATPUC PACCETHUS
IIPUBOJUT K CJIEAYIOINM 3aKJIIUYEHUAM: pACCeAHME ABIAETCI CUMMETPUYHBIM
OTHOCUTEJIBHO IIJIOCKOCTY NAJeHUA; C YBeJIUUEHNEM CTEIIeHN KaJNOPOBKU IIO-
BEPXHOCTY KapTMHA PAaCCeAHUSA YCJIOKHAETCA; HAUOOJBbIIAA MHTEHCUBHOCTH
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pacceaHHO¥ BOJIHBI HaOJIIOlaeTCA B 3€PKAJILHOM HAIIPaBJIEeHUU U, KPOME TOTO,
CYILIECTBYIOT JPyrue HAIpPaBJeHUsA, B KOTOPBHIX HAOJIIOJAIOTCA BCILJIECKU WH-
TEeHCUBHOCTH.
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1. INTRODUCTION

Accurate measurement of surface roughness of machined work pieces
is of fundamental importance particularly in the precision engineering
and manufacturing industry. This is caused by the more stringent de-
mands on material quality as well as the miniaturization of product
components in these industries [1-3]. For instance, in the disk drive
industry, to maintain the quality of the electrical components mounted
on an optical disk, the surface roughness of the disk must be accurately
measured and controlled. Hence, the surface finish, normally ex-
pressed in terms of surface roughness, is a critical parameter used for
the acceptance or rejection of a product.

Surface roughness is usually determined by a mechanical stylus pro-
filometre. However, the stylus technique has certain limitations: the
mechanical contact between the stylus and the object can cause defor-
mations or damage of the specimen surface and it is a point wise and
time-consuming measurement method. Hence, a noncontact and faster
optical method would be attractive. Different optical noncontact meth-
ods for surface roughness measuring were developed. They are based
on reflected light detection, focus error detection, laser scattering,
speckle and interference measurements [4—10]. Some of them have a
good resolution and are applied in some sectors where mechanical
measurement methods previously enjoyed clear predominance. Among
these methods, the light scattering method [11] is a noncontact area-
averaging technique and is potentially faster for surface inspection
than other profiling techniques, particularly, the traditional stylus
technique. Other commercially available products such as the scanning
tunnelling microscope (STM), the atomic force microscope (AFM) and
subwavelength photoresist gratings [12—15], which are pointwise tech-
niques, are used mainly for optically smooth surfaces with roughness
in the nanometre range.

In this paper, the average coefficient of light scattering by surface
fractal structures was calculated in the frameworks of the Kirchhoff’s
method (scalar model). A normalized band-limited Weierstrass function
was used to simulate 2D fractal rough surfaces. On the basis of numeri-
cal calculation of average scattering coefficient, the scattering indica-
trixes for various surfaces and incidence angles were calculated. The
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analysis of the indicatrixes leads us to the following conclusions: the
scattering is symmetric about the incidence plane; with the increase of
surface calibration degree, the scattering pattern becomes more compli-
cated; the greatest intensity of the scattered wave is observed along the
mirror direction; there are other directions, in which the intensity
bursts are observed.

2. FRACTAL MODEL FOR TWO-DIMENSIONAL ROUGH SURFACES

The following form of the modified two-dimensional band-limited
Weierstrass function is proposed:
2nm
}Hpnm},(l)
m

N-1 M
z2(x,y)=¢,>. > ¢" V" sin {Kq” [x cos 2

n=0 m=1 M
where ¢, is a constant, which ensures that W(x, y) has a unit perturba-
tion amplitude; ¢ (¢>1) is the fundamental spatial frequency; D
(2 < D < 3)is the fractal dimension; K is the fundamental wavenumber;
N and M are number of tones, and ¢,, is a phase term that has a uni-
form distribution over the interval [-r, 7t].

The above function is a combination of both deterministic periodic
and random structures. This function is anisotropic in two directions
if M and N are not too large. It has a large derivative and is self-
similar. It is a multiscale surface, which has same roughness down to
some fine scales. Since natural surfaces are generally neither purely
random nor purely periodic and often anisotropic, the function pro-
posed above is a good candidate to model natural surfaces.

The phases ¢,,, can be chosen determinedly or casually, obtaining ac-
cordingly determine or stochastic function z(x, y). We shall further con-
sider ¢,,, as casual values, which are regularly distributed on an interval
[-m, t]. For each particular choice of numerical value of all NxM phases,
¢, (for example, by means of the random numbers generator), we obtain
particular (with the meanings of parameters ¢, ¢, K, D, N, M chosen in
advance) realization of function z(x, y). Every possible realization of
function z(x, y) forms an ensemble of surfaces.

Deviation of points of a rough surface from a basic plane is propor-
tional to ¢,; therefore, this parameter is connected with the height of
surface structure irregularities. Further, a rough surface is deter-
mined, specifying root-mean-square height of its structure ¢, which is
determined by such expression:

o = J(n?), (2)

where h = z(x, y), <> :ﬁﬁjd(p—”’"(...) —averaging over ensemble of

n=0 m=1 _g 275

+ ysin
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surfaces.
The relationship between ¢, and 6 can be established by direct calcu-
lation of integrals:

v g 1 M 1_q2N(D—3) 3
o H_fn ;p;mzz(x’y) "G 251_(12@3))) . 3)

—

n=0 m=

So, the rough surface in our model is described by function of six pa-
rameters: ¢, (or 6), g, K, D, N, M. The influence of different parame-
ters on a kind of a surface can be investigated both analytically and
studying structures of surfaces constructed by results of numerical
calculations of Weierstrass function. Thus, it was found out that:

the wave number K determines the wavelength of the basic har-
monic of the surface;

the numbers, N, M, D, and g, determine a degree of surface calibra-
tion at the expense of imposing of additional harmonics on the basic
wave, and N and M determine the number of harmonics, which are im-
posed;

D determines amplitude of harmonics;

q determines both amplitude and frequency of harmonics.

Let us note that, with increase of N, M, D, and ¢, the spatial uni-
formity of the surface on a large scale is also increased.

3. LIGHT SCATTERING ON SURFACE FRACTAL STRUCTURES

Experiment diagram of light scattering is presented in Fig. 1.
The initial light wave falls on a rough surface S under angle 6, and is
scattered in all directions. The scattering wave is registered by the de-

Fig. 1. Experiment diagram for light scattering by fractal surface; S is a scat-
tering surface; D—detector, 6, is an incidence angle; 6, is a polar angle; 6, is
an azimuth angle.
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tector D in the direction, which is characterized by a polar angle 6, and
an azimuthal angle 6;. The intensity of light I, scattered in (0,, 6;) di-
rection is measured. Our goal is construction of indicatrix of electro-
magnetic wave scattering by a fractal surface (1).

As I, =E.E; (where E, is an electric field of the scattered wave in
complex representation), the problem of I, finding is reduced to find-
ing of the scattered field E,.

We shall find the scattered field using Kirchhoff’s method [16], and
considering complexity of a problem, we shall take advantage of sim-
pler scalar variant of the theory, according to which the electromag-
netic field is described by scalar variable. Thus, we lose an opportunity
to analyze polarizing effects.

The base formula of Kirchhoff’s method makes it possible to find the
scattered field under such conditions:

the incident wave is monochromatic and plane;

a scattering surface is rough inside some rectangular (-X < x,< X,
-Y <y, <Y)and smooth outside of its boundaries;

the size of the rough site is significantly greater than length of inci-
dent wave;

all points of the surface have finite gradient;

the reflection coefficient is identical for all points of the surface;

the scattered field is observed in a wave zone, i.e. well away from the
scattering surface.

Under these conditions, the scattered field is given by

) exp(ikr .
E (r) = —ikrF(6,,6,, 93)# I expliko(x,, y,)ldx,dy, + E,(r) ,(4)
SO

where k is the wave number of incident wave; F(6,,6,,0,)=
!

A®+ B’ +C*) is the angle factor; A =sin6, —sin®,cos6,;

B =-sin®,sin0,; C =—-cosO, —cos0,; R is the scattering coefficient;
o(x,,Y,) = Ax, + By, + Ch(x,,y,) is the phase function; h(x,,y,) =

R exp(ikr)
B

yy— (AI, + BI,),

=2(xy,Yy) ;5 E (r) =

I = .Y[ [eik‘P(X’y‘)) - eikq’(_x'y")}dym I, = ]g [eikq’(x"’y) - eik"’(x"'_y)]dxo. (5)

After calculation of integrals (4) and (5) using formula

izsing __

e = > I,(z)e™, where I,(z) is the Bessel function of integer order,

[=—oco

we obtain:
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E,(r) = —2ikFXY explikr) > {H I &, )} eigl""’%"‘ } sin e(k,X)sin ¢(k,Y) + E, (r)
nr l{rs} uv “

(6)
where F = F(0,, 0,, 0,),

=3 ¥ X I1=111] >
l{rs} ly == ly g=— .Z(N—l),M:—m ’ uv - u=1 v=0 ’ nm - n=1 m=0 ’
- . sinx
€, = kcqu(D sinex = pat

k,=kA+KY "L, cosznvm, k,=kB+KY 'l sin 2]’:4"1 ,

ikr

e

E,(r) =—ikXYg(A2 +Bz) sinc(kAX)sinc(kBY).

nr

Thus, expression (6) gives the solution of the problem of finding of
field scattering by a fractal surface within the frameworks of Kirchhoff’s
method.

Now, it is possible to calculate intensity of scattered waves using
formula (4) if parameters of the scattering surfacec, (oro), D, q, K, N,

M, X,Y, ¢,, parameter k (or A= 2—:) of the incident wave, and pa-

rameters 0,, 0,, 0; of geometry of experiment are known. This intensity
will characterize scattering of specific realization of the surface z(x, y)
(with a specific set of casual phases 0,,). For comparison of calcula-
tions with experimental data, it is necessary to operate with intensity

averaged over ensemble of surfaces: <Is> = <ESE;> . This intensity is

2EXY cos 0,
nr

from the corresponding smooth basic surface. Therefore, for the theo-
retical analysis of results, it is more convenient to use averaged scat-

(1)
IO

After calculation of <Is> and starting from (6), we obtain exact ex-
pression:

{p,) = {M} > {H I} (&,)sinc® (k,X)sinc? (ksY)} +

cos 6, I

2
proportional to intensity I :( j of the wave reflected

tering coefficient: <ps> =
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R(a>+B)]
+|——*| sinc® (kAX)sinc® (EBY). (7)
2C cos 6,

As expression (7) consists of the infinite sum, it is inconvenient to
use for numerical calculations. Essential simplification is reached in
the case when &, < 1. Using series expansion of function as follows,

v 2 k
3V o (-2°/4)
Iv (Z) = E ZF ’
S RIT(V+E+1)
and rejecting terms of orders greater than &’, we obtain the ap-
proximate expression for averaged scattering coefficient

(p,) = {F(?TEGS)T {[1-(koC)" Jsine* (kAX)sine? (kBY) +
2mm j X} sinc?+
M

)

2
R . .
+[W(A2 + Bz)} sinc® (kAX )sin¢® (kBY), (8)

+ % >y ¢*" " sin ¢? KkA + Kq" cos

+Kk3 + Kq" sin

_ 2(D-3) |2
where ¢, = kc,C = koC {%%} .

2N(D-3
—-q

4. RESULTS OF NUMERICAL CALCULATIONS

On the basis of numerical calculations of average factor of scattering
according to formula (8), we constructed the dependence of the aver-
aged scattering coefficient <ps> on 0, and 0, (scattering indicatrixes)
for different types of scattering surfaces. At these calculations, we
supposed that R=1, and, consequently, did not consider real depend-
ence of reflection coefficient R on the incidence wavelength, A, and in-
cidence angle, 0,. The obtained results are presented in Fig. 2.

The analysis of the indicatrixes leads us to the following conclusions:
the scattering is symmetric about the incidence plane;
the greatest intensity of the scattered wave is observed along the mirror
direction;
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there are other directions, in which splashes in intensity are observed;
with the increase of surface calibration degree (or with growth of its
large-scale heterogeneity), the scattering pattern becomes more compli-
cated.

The scattering is slightly dependent on the type of scattering sur-
face, and there is a dependence of the scattering coefficient on the
light-wave incidence angle. With increase of the incidence angle from
30° to 60°, the number of additional peaks decreases. Their most num-
ber is observed at 0; = 30°. It is related to the influence of the height of
irregularities of the surface on the scattering process.

-y

L'|.¢C.¢',>—6E

w

o mﬁ‘“ﬂ*ﬂﬁ f LMT‘**J?

d d

Fig. 2. Dependences of log <p8> on angles 0, and 6, for various types of fractal
surfaces: a, a’, a—the samples of rough surfaces, for which the calculation of
scattering indexes is produced; from top to bottom, the change of scattering
index is routine for three angles of incidence: 6, = 30, 40, 60° (a—d, a*~d’, a”—
d’)y at N=5, M=10, D=2,9, ¢=1,1; n=2, M=3, D=2,5, ¢=3; N=5,
M =10, q = 3, respectively.
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The noted features of scattering are investigation of combination of
chaotic state and self-similarity of the scattering-surface relief.

5. CONCLUSION

In this paper, the average coefficient of light scattering by surface
fractal structures was calculated within the scope of Kirchhoff’s
method. A normalized band-limited Weierstrass function is presented
for modelling of 2D fractal rough surfaces. On the basis of numerical
calculations of average scattering coefficient, the scattering indica-
trixes for various surfaces and incidence angles were calculated. The
analysis of the indicatrixes leads us to the following conclusions: the
scattering is symmetric about the incidence plane; with the increase of
surface calibration degree, the scattering pattern becomes more compli-
cated; the greatest intensity of the scattered wave is observed along the
mirror direction; there are other directions, in which the intensity
bursts are observed.
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