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The average coefficient of light scattering by surface fractal structures is cal-
culated within the scope of the Kirchhoff’s method. Two-dimensional band-
limited Weierstrass function is used to simulate a scattering surface. On the 

basis of numerical calculations of average scattering coefficient, the scattering 

indicatrixes for various surfaces and incidence angles are calculated. The 

analysis of the indicatrixes leads to the following conclusions: the scattering is 

symmetric about the incidence plane; with the increase of surface calibration 

degree, the scattering pattern becomes more complicated; the greatest inten-
sity of the scattered wave is observed along the mirror direction; there are 

other directions, in which the intensity bursts are observed. 

В рамках Кирхгоффової методи розраховано середній коефіцієнт розсіян-
ня світла поверхневими фрактальними структурами. Для моделювання 

розсіювальної поверхні використовувалася двовимірна, обмежена смугою 

Вейєрштрассова функція. Виконано чисельні розрахунки середнього ко-
ефіцієнта розсіяння та побудовано індикатриси розсіяння для різних ти-
пів поверхонь та кутів падіння. Аналіза індикатрис розсіяння призводить 

до наступних висновків: розсіяння є симетричним відносно площини па-
діння; зі збільшенням ступеня калібрування поверхні картина розсіяння 

ускладнюється; найбільша інтенсивність розсіяної хвилі спостерігається 

в дзеркальному напрямку і, крім того, існують напрямки, в яких спосте-
рігаються сплески інтенсивности. 

В рамках метода Кирхгофа рассчитан средний коэффициент рассеяния 

света поверхностными фрактальными структурами. Для моделирования 

рассеивающей поверхности использовалась двумерная, ограниченная по-
лосой функция Вейерштрасса. Произведены численные расчеты среднего 

коэффициента рассеяния и построены индикатрисы рассеяния для раз-
личных поверхностей и углов падения. Анализ индикатрис рассеяния 

приводит к следующим заключениям: рассеяние является симметричным 

относительно плоскости падения; с увеличением степени калибровки по-
верхности картина рассеяния усложняется; наибольшая интенсивность 
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рассеянной волны наблюдается в зеркальном направлении и, кроме того, 
существуют другие направления, в которых наблюдаются всплески ин-
тенсивности. 
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1. INTRODUCTION 

Accurate measurement of surface roughness of machined work pieces 

is of fundamental importance particularly in the precision engineering 

and manufacturing industry. This is caused by the more stringent de-
mands on material quality as well as the miniaturization of product 

components in these industries [1—3]. For instance, in the disk drive 

industry, to maintain the quality of the electrical components mounted 

on an optical disk, the surface roughness of the disk must be accurately 

measured and controlled. Hence, the surface finish, normally ex-
pressed in terms of surface roughness, is a critical parameter used for 

the acceptance or rejection of a product. 
 Surface roughness is usually determined by a mechanical stylus pro-
filometre. However, the stylus technique has certain limitations: the 

mechanical contact between the stylus and the object can cause defor-
mations or damage of the specimen surface and it is a point wise and 

time-consuming measurement method. Hence, a noncontact and faster 

optical method would be attractive. Different optical noncontact meth-
ods for surface roughness measuring were developed. They are based 

on reflected light detection, focus error detection, laser scattering, 

speckle and interference measurements [4—10]. Some of them have a 

good resolution and are applied in some sectors where mechanical 
measurement methods previously enjoyed clear predominance. Among 

these methods, the light scattering method [11] is a noncontact area-
averaging technique and is potentially faster for surface inspection 

than other profiling techniques, particularly, the traditional stylus 

technique. Other commercially available products such as the scanning 

tunnelling microscope (STM), the atomic force microscope (AFM) and 

subwavelength photoresist gratings [12—15], which are pointwise tech-
niques, are used mainly for optically smooth surfaces with roughness 

in the nanometre range. 
 In this paper, the average coefficient of light scattering by surface 

fractal structures was calculated in the frameworks of the Kirchhoff’s 

method (scalar model). A normalized band-limited Weierstrass function 

was used to simulate 2D fractal rough surfaces. On the basis of numeri-
cal calculation of average scattering coefficient, the scattering indica-
trixes for various surfaces and incidence angles were calculated. The 
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analysis of the indicatrixes leads us to the following conclusions: the 

scattering is symmetric about the incidence plane; with the increase of 

surface calibration degree, the scattering pattern becomes more compli-
cated; the greatest intensity of the scattered wave is observed along the 

mirror direction; there are other directions, in which the intensity 

bursts are observed. 

2. FRACTAL MODEL FOR TWO-DIMENSIONAL ROUGH SURFACES 

The following form of the modified two-dimensional band-limited 

Weierstrass function is proposed: 
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where cw is a constant, which ensures that W(x, y) has a unit perturba-
tion amplitude; q (q > 1) is the fundamental spatial frequency; D 

(2 < D < 3) is the fractal dimension; K is the fundamental wavenumber; 

N and M are number of tones, and ϕnm is a phase term that has a uni-
form distribution over the interval [−π, π]. 
 The above function is a combination of both deterministic periodic 

and random structures. This function is anisotropic in two directions 

if M and N are not too large. It has a large derivative and is self-
similar. It is a multiscale surface, which has same roughness down to 

some fine scales. Since natural surfaces are generally neither purely 

random nor purely periodic and often anisotropic, the function pro-
posed above is a good candidate to model natural surfaces. 
 The phases ϕnm can be chosen determinedly or casually, obtaining ac-
cordingly determine or stochastic function z(x, y). We shall further con-
sider ϕnm as casual values, which are regularly distributed on an interval 
[−π, π]. For each particular choice of numerical value of all N×M phases, 

ϕnm (for example, by means of the random numbers generator), we obtain 

particular (with the meanings of parameters cw, q, K, D, N, M chosen in 

advance) realization of function z(x, y). Every possible realization of 

function z(x, y) forms an ensemble of surfaces. 
 Deviation of points of a rough surface from a basic plane is propor-
tional to cw; therefore, this parameter is connected with the height of 

surface structure irregularities. Further, a rough surface is deter-
mined, specifying root-mean-square height of its structure σ, which is 

determined by such expression: 
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surfaces. 
 The relationship between cw and σ can be established by direct calcu-
lation of integrals: 
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 So, the rough surface in our model is described by function of six pa-
rameters: cw (or σ), q, K, D, N, M. The influence of different parame-
ters on a kind of a surface can be investigated both analytically and 

studying structures of surfaces constructed by results of numerical 
calculations of Weierstrass function. Thus, it was found out that: 
 the wave number K determines the wavelength of the basic har-
monic of the surface; 
 the numbers, N, M, D, and q, determine a degree of surface calibra-
tion at the expense of imposing of additional harmonics on the basic 

wave, and N and M determine the number of harmonics, which are im-
posed; 
 D determines amplitude of harmonics; 
 q determines both amplitude and frequency of harmonics. 
 Let us note that, with increase of N, M, D, and q, the spatial uni-
formity of the surface on a large scale is also increased. 

3. LIGHT SCATTERING ON SURFACE FRACTAL STRUCTURES 

Experiment diagram of light scattering is presented in Fig. 1. 
 The initial light wave falls on a rough surface S under angle θ1 and is 

scattered in all directions. The scattering wave is registered by the de-
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�
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Fig. 1. Experiment diagram for light scattering by fractal surface; S is a scat-
tering surface; D–detector, θ1 is an incidence angle; θ2 is a polar angle; θ3 is 

an azimuth angle.  
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tector D in the direction, which is characterized by a polar angle θ2 and 

an azimuthal angle θ3. The intensity of light Is scattered in (θ2, θ3) di-
rection is measured. Our goal is construction of indicatrix of electro-
magnetic wave scattering by a fractal surface (1). 
 As 

∗=s s sI E E  (where Es is an electric field of the scattered wave in 

complex representation), the problem of Is finding is reduced to find-
ing of the scattered field Es. 
 We shall find the scattered field using Kirchhoff’s method [16], and 

considering complexity of a problem, we shall take advantage of sim-
pler scalar variant of the theory, according to which the electromag-
netic field is described by scalar variable. Thus, we lose an opportunity 

to analyze polarizing effects. 
 The base formula of Kirchhoff’s method makes it possible to find the 

scattered field under such conditions: 
 the incident wave is monochromatic and plane; 
 a scattering surface is rough inside some rectangular (−X < x0 < X, 

−Y < y0 < Y) and smooth outside of its boundaries; 
 the size of the rough site is significantly greater than length of inci-
dent wave; 
 all points of the surface have finite gradient; 
 the reflection coefficient is identical for all points of the surface; 
 the scattered field is observed in a wave zone, i.e. well away from the 

scattering surface. 
 Under these conditions, the scattered field is given by 
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 After calculation of integrals (4) and (5) using formula 
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= ∑  where I1(z) is the Bessel function of integer order, 

we obtain: 
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 Thus, expression (6) gives the solution of the problem of finding of 

field scattering by a fractal surface within the frameworks of Kirchhoff’s 

method. 
 Now, it is possible to calculate intensity of scattered waves using 

formula (4) if parameters of the scattering surface cw (or σ), D, q, K, N, 

M, X, Y, φnm, parameter k 
2

or 
k

π⎛ ⎞λ =⎜ ⎟
⎝ ⎠

 of the incident wave, and pa-

rameters θ1, θ2, θ3 of geometry of experiment are known. This intensity 

will characterize scattering of specific realization of the surface z(x, y) 

(with a specific set of casual phases φnm). For comparison of calcula-
tions with experimental data, it is necessary to operate with intensity 

averaged over ensemble of surfaces: 
∗=s s sI E E . This intensity is 

proportional to intensity 
θ⎛ ⎞= ⎜ ⎟π⎝ ⎠

2

1
0

2 coskXY
I

r
 of the wave reflected 

from the corresponding smooth basic surface. Therefore, for the theo-
retical analysis of results, it is more convenient to use averaged scat-

tering coefficient: 
0

.s
s

I

I
ρ =  

 After calculation of sI  and starting from (6), we obtain exact ex-
pression: 
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 As expression (7) consists of the infinite sum, it is inconvenient to 

use for numerical calculations. Essential simplification is reached in 

the case when ξn < 1. Using series expansion of function as follows, 
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and rejecting terms of orders greater than 2
nξ , we obtain the ap-

proximate expression for averaged scattering coefficient 
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4. RESULTS OF NUMERICAL CALCULATIONS 

On the basis of numerical calculations of average factor of scattering 

according to formula (8), we constructed the dependence of the aver-
aged scattering coefficient sρ  on θ2 and θ3 (scattering indicatrixes) 

for different types of scattering surfaces. At these calculations, we 

supposed that R = 1, and, consequently, did not consider real depend-
ence of reflection coefficient R on the incidence wavelength, λ, and in-
cidence angle, θ1. The obtained results are presented in Fig. 2. 
 The analysis of the indicatrixes leads us to the following conclusions: 
the scattering is symmetric about the incidence plane; 
the greatest intensity of the scattered wave is observed along the mirror 

direction; 
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there are other directions, in which splashes in intensity are observed; 
with the increase of surface calibration degree (or with growth of its 

large-scale heterogeneity), the scattering pattern becomes more compli-
cated. 
 The scattering is slightly dependent on the type of scattering sur-
face, and there is a dependence of the scattering coefficient on the 

light-wave incidence angle. With increase of the incidence angle from 

30° to 60°, the number of additional peaks decreases. Their most num-
ber is observed at θ1 = 30°. It is related to the influence of the height of 

irregularities of the surface on the scattering process. 

     
                 а                                 а′                                a″ 

     
                 b                                 b′                                b″ 

   
                 c                                 c′                                c″ 

   
                d                                  d′                                d″ 

Fig. 2. Dependences of log sρ  on angles θ1 and θ3 for various types of fractal 
surfaces: a, a′, a–the samples of rough surfaces, for which the calculation of 

scattering indexes is produced; from top to bottom, the change of scattering 

index is routine for three angles of incidence: θ1 = 30, 40, 60° (a—d, a′—d′, a″—
d″) at N = 5, M = 10, D = 2,9, q = 1,1; n = 2, M = 3, D = 2,5, q = 3; N = 5, 

M = 10, q = 3, respectively. 
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 The noted features of scattering are investigation of combination of 

chaotic state and self-similarity of the scattering-surface relief. 

5. CONCLUSION 

In this paper, the average coefficient of light scattering by surface 

fractal structures was calculated within the scope of Kirchhoff’s 

method. A normalized band-limited Weierstrass function is presented 

for modelling of 2D fractal rough surfaces. On the basis of numerical 
calculations of average scattering coefficient, the scattering indica-
trixes for various surfaces and incidence angles were calculated. The 

analysis of the indicatrixes leads us to the following conclusions: the 

scattering is symmetric about the incidence plane; with the increase of 

surface calibration degree, the scattering pattern becomes more compli-
cated; the greatest intensity of the scattered wave is observed along the 

mirror direction; there are other directions, in which the intensity 

bursts are observed. 
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