© 2009 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 32.50.+d, 73.20.Mf, 78.45.+h, 78.67.Bf

Особенности кооперативной эмиссии света группой диполей, расположенных вблизи металлической наночастицы

В. Пустовит

Институт химии поверхности им. А. А. Чуйко НАН Украины, ул. Генерала Наумова, 17, 03164 Киев, Украина

В работе рассматривается процесс радиационного и нерадиационного затухания колебаний слоя молекул-диполей, расположенных вблизи маленькой наночастицы золота. Предложено новое определение механизма эффекта Дике для кооперативного излучения ансамбля молекул вблизи наночастицы. Показано, что энергия, излученная системой N молекул, всего лишь в три раза больше чем энергия, излученная одной молекулой, находящейся возле наночастицы.

У роботі розглядається процес радіяційного й нерадіяційного згасання коливань шару молекуль-диполів, розташованих поблизу маленької наночастинки золота. Запропоновано нове визначення механізму ефекту Діке для кооперативного випромінення ансамблю молекуль поблизу наночастинки. Показано, що енергія, випромінена системою N молекуль, усього лише в три рази більша ніж енергія, випромінена однією молекулою, що перебуває біля наночастинки.

The process of radiating and non-radiating damping of the layer of molecules-dipoles located near a small gold nanoparticle is considered. A new mechanism of the Dicke effect for cooperative emission of molecular layer near nanoparticle is proposed. As shown, the total radiated energy for the system of N molecules is only three times higher than that of a single molecule located near nanoparticle.

Ключевые слова: наночастица, флуоресценция, кооперативное излучение, радиационное и нерадиационное затухание, эффект Дике.

(Получено 24 апреля 2009 г.)

785

1. ВВЕДЕНИЕ

В последнее время вновь привлек внимание процесс излучения молекулярных диполей находящихся вблизи металлических наночастиц, видимо, из-за возможных биологических аспектов применения. Эмиссия фотона молекулой, находящейся вблизи наночастицы, включает в себя два конкурирующих процесса: резонансная бесфотонная передача энергии от молекулы к наночастице и затухание оптически неактивных возбуждений в металле (омические потери). Эти каналы характеризуются радиационным, Γ , и нерадиационными, Γ^{nr} , степенями затухания соответственно, а также квантовым выходом системы $Q = \Gamma^r / (\Gamma^r + \Gamma^{nr})$. Их баланс определяется расстоянием, на котором находится молекула от поверхности наночастицы. Эмиссия получается максимальной на определенном оптимальном расстоянии и гасится, когда диполь приближается к поверхности наночастицы. Оба процесса усиления и гашения хорошо наблюдаются в экспериментах по флуоресценции молекул, находящихся вблизи частиц золота или серебра [1-5]. Как оказалось, результаты экспериментов хорошо согласуются с теоретическими моделями [6], когда в системе взаимодействуют только одна молекула с наночастицей. Более интересной, однако, с экспериментальной точки зрения является модель с ансамблем молекул, расположенных вокруг наночастицы. В этом случае мы будем обязаны учесть эффект кооперативного взаимодействия между молекулами и наночастицей, а также между молекулами через наночастицу.

2. ТЕОРИЯ И ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

Рассмотрим систему N излучателей, например, флуоресцирующих молекул с дипольным моментом $d_j = d_j e_j$, где d_i и e_i являются амплитудой и ориентацией молекулы соответственно. Положение излучателей определяют вектора r_i вокруг сферической поверхности наночастицы радиуса R. Предполагаем, что изначально слой молекул был возбужден внешним лазерным импульсом, и каждая молекула, перед тем как излучить фотон, релаксирует посредством внутренних переходов. Для описания взаимодействия молекул мы используем модель классических Лорентцовских осцилляторов с разными (случайными) начальными фазами, колеблющихся в электрическом поле, созданном всеми диполями в присутствии наночастицы. Частотно-зависимое электрическое поле $E(\mathbf{r}, \omega)$ удовлетворяет уравнению Максвелла [7]

$$\frac{\varepsilon(r,\omega)\omega^{2}}{c^{2}}E(r,\omega) - \nabla\nabla E(r,\omega) = -\frac{4\pi i\omega}{c^{2}}j(r,\omega), \qquad (1)$$

где диэлектрическая проницаемость $\varepsilon(r, \omega)$ определяется как для металла внутри частицы r < R, и как для диэлектрика снаружи, r > R. Функция $j(r, \omega) = -i \int_{0}^{\infty} e^{i\omega t} j(t) dt$ является преобразованием Лапласа от дипольного тока $j(t) = q \sum_{j} d_{j}(t) \delta(r - r_{j})$. Решение уравнения (1) можно представить в виде

$$E(r,\omega) = -\frac{4\pi d_0 q \omega_0^2}{c^2} \sum_j G(r,r_j,\omega) e_j v_j, \qquad (2)$$

где дипольное смещение $d_j(t)$ происходит под воздействием электрического поля согласно уравнению осциллятора

$$\ddot{d}_j + \omega_0^2 d_j = \frac{q}{m} E(r_j, t) e_j$$
(3)

с начальными условиями $d_j = d_0 e_j \sin \phi_j$, $\dot{d}_j = \omega_0 d_0 e_j \cos \phi_j$ и E = 0 при t = 0 (точка обозначает производную по времени), и где мы вводим нормализованные смещения $v_j(\omega) = d_j(\omega)/d_0 - i(\omega_j/\omega^2)\cos\phi_j - \omega^{-1}\sin\phi_j$ и $v_{0j} = -i(\omega_j^3/\omega^2)\cos\phi_j - (\omega_j^2/\omega)\sin\phi_j$. Параметры ω_0, q, m определяют начальную частоту, заряд и массу осциллятора соответственно. Функция $G(r, r_j, \omega)$ является диадной функцией электрического поля в присутствии наночастицы и удовлетворяющей соотношению $\nabla \nabla \hat{G} - [\varepsilon(r, \omega)\omega^2/c^2]\hat{G} = \hat{I}$. Для частоты фотона близкой к частоте колебаний диполей мы приходим к следующей системе связанных уравнений

$$\sum_{k} \left[\left(\omega_{0} - \omega \right) \delta_{jk} + \Sigma_{jk} \right] \upsilon_{k} = -\frac{i}{2} e^{-i\phi_{j}} , \qquad (4)$$

где комплексная матрица собственной энергии, Σ_{ik} , задана как

$$\Sigma_{jk}\left(\omega\right) = -\frac{2\pi q^2 \omega_0}{mc^2} e_j G\left(r_j, r_k, \omega\right) e_k \,. \tag{5}$$

Данная система определяет собственные состояния системы Nизлучателей, связанных между собой через поле излучения и электронные возбуждения в наночастице. Диагональные элементы матрицы, Σ_{jj} , определяют сдвиг энергии и степень затухания изолированного диполя в присутствии наночастицы. В частности их мнимая часть определяет полную степень затухания диполя, $\Gamma = \Gamma^r + \Gamma^{nr}$, где радиационный член, Γ^r , описывает эмиссию диполем фотона, усиленную поверхностным плазмоном наночастицы. В свою очередь нерадиационный член, Γ^{nr} , описывает диссипацию энергии за счет ее бесфотонной передачи в наночастицу в оптически неактивные возбуждения.

Рассмотрим наиболее экспериментально подходящий вариант, когда характеристические размеры системы намного меньше, чем длина волны падающего излучения, т.е. $|r_{jk}| << \lambda$. Необходимо заметить, что это именно тот случай когда происходит эффект кооперативной эмиссии ансамбля свободных диполей в отсутствии наночастицы (эффект Дике [8]). В этом случае для вычисления матричных элементов Σ_{jk} мы можем использовать приближение ближнего поля для функции Грина $G(r, r_i, \omega)$ в присутствии наночастицы, полученное из теории Ми [9]. Результат будет представлять собой сумму вкладов в функцию Грина свободного пространства и наночастицы, $\Sigma_{jk} = \Sigma_{jk}^0 + \Sigma_{jk}^{np}$, где

$$\Sigma_{jk}^{0} = \Sigma_{jk}^{d-d} - i\Gamma_{0}^{r}e_{j}e_{k} - i\delta_{jk}\Gamma_{0}^{nr},$$

$$\Sigma_{jk}^{np} = -\frac{3\Gamma_{0}^{r}}{2k^{3}}\Sigma_{l}\alpha_{l}T_{jk}^{(l)} + i\Gamma_{0}^{r}\left[\alpha_{1}\left[K_{jk}^{(l)} + h.c.\right] - \left|\alpha_{1}\right|^{2}T_{jk}^{(1)}\right],$$
(6)

где Σ_{jk}^{d-d} — член диполь-дипольного взаимодействия; $\Gamma_0^r = \frac{kq^2\omega_0}{3mc^2}$ — степень радиационного затухания свободного диполя в среде с диэлектрической проницаемостью ε_0 , Γ_0^{nr} нерадиационные потери диполя и α_l — мультипольная поляризуемость частицы. Матрицы $K_{jk}^{(l)}$ и $T_{jk}^{(l)}$ представлены как

$$\begin{split} T_{jk}^{(l)} &= \frac{4\pi}{2l+1} \sum_{m=-l}^{l} e_{j} \psi_{lm} \left(r_{j} \right) e_{k} \psi_{lm}^{*} \left(r_{k} \right), \ K_{jk}^{(l)} &= \frac{4\pi}{2l+1} \sum_{m=-l}^{l} e_{j} \psi_{lm} \left(r_{j} \right) e_{k} \chi_{lm}^{*} \left(r_{k} \right), (7) \end{split}$$
где $\psi_{lm} \left(r \right) &= \nabla \left[r^{-l-1} Y_{lm} \left(n \right) \right], \ \chi_{lm} \left(r \right) &= \nabla \left[r^{l} Y_{lm} \left(n \right) \right], \ \mu \quad Y_{lm} \left(n \right) \qquad -$ сферические гармоники $(n -$ это единичный вектор, направленный вдоль вектора r). Полная матрица затухания системы получается, если взять мнимую часть от матрицы собственной энергии, $\Gamma_{jk} = -\operatorname{Im} \Sigma_{jk}$ и затем разделить на радиационную и нерадиационную и нерадиационные части $\Gamma_{ik} = \Gamma_{ik}^{r} + \Gamma_{ik}^{nr} + \delta_{ik} \Gamma_{0}^{nr}$ в виде

$$\Gamma_{jk}^{r} = \Gamma_{0}^{r} \left[\left(e_{j} e_{k} \right) - \alpha_{1}^{'} \left(K_{jk}^{(1)} + h.c. \right) + \left| \alpha_{1} \right|^{2} T_{jk}^{(1)} \right], \quad \Gamma_{jk}^{nr} = \frac{3\Gamma_{0}^{r}}{2k^{3}} \sum_{l} \alpha_{l}^{"} T_{jk}^{(l)}, \quad (8)$$

Далее найдем энергию излучения на единицу частотного интер-

вала, полученную за счет интегрирования спектральной интенсивности по телесному углу, $dW/d\omega = \left(c\varepsilon_0/4\pi^2\right)\int \left|E\left(r,\omega\right)\right|^2 r^2 d\Omega$, усреднив результат по случайным начальным фазам ϕ_i . Упуская детали аналитических вычислений, конечное выражение принимает вид

$$\frac{dW}{d\omega} = \frac{1}{4\pi} Tr \left[\frac{\varepsilon_0 \hbar \omega_0}{\left(\omega - \omega_0 - \widehat{\Sigma} \right) \left(\omega - \omega_0 - \widehat{\Sigma}^+ \right)} \widehat{\Gamma}^{(r)} \right], \tag{9}$$

где взят след по индексам матриц Σ_{ik} и Γ_{ik} .

В случае отсутствия междипольного взаимодействия между молекулами, т.е. когда эти матрицы становятся чисто диагональными, интегрирование по частоте выражения (9) дает полную энергию излучения N изолированных диполей в присутствии наночастицы в виде $W = NW_0$. Это происходит, если предположить отсутствие взаимодействия между диполями. На самом деле ситуация гораздо сложнее и интереснее, особенно когда молекулы находятся вблизи наночастицы. В присутствии взаимодействия между диполями через наночастицу матрица Σ_{jk} перестает быть диагональной, ее ненулевые недиагональные элементы определяют взаимодействие в системе и вблизи наночастицы их значение становится большим. Образуются коллективные состояния системы, определяемые собственными векторами оператора $\hat{\Sigma}$.

Данные коллективные состояния можно разделить на радиационные состояния, которые можно будет наблюдать экспериментально на каком-то расстоянии от системы и нерадиационные состояния, которые не дают излучения от системы, а только потери, связанные с нерадиационным обменом энергией между молекулами и наночастицей. Интересен тот факт, что в соответствии с аналитическими вычислениями, данные радиационные состояния можно разделить на три суперрадиационных состояния, определяющие излучение фотона (каждый с радиационным затуханием $\gamma_{
m u}^{r} pprox N\Gamma^{r}/3$) и все оставшиеся (N-3) субрадиационные состояния, что не дают вклад в излучение, но определяют потери в системе. Математически данный эффект связан с тем, что на больших расстояниях от наночастицы мы можем пренебречь высокими мультиполями взаимодействия, оставив только (L = 1), что существенно облегчит взятие следа в выражении (9) (детали вывода оставлены за рамками этой статьи). После проделанных упрощений и интегрирования по частоте мы приходим к окончательному выражению для полной излученной энергии системы

$$W = \frac{\sqrt{\varepsilon_0 \hbar \omega_0}}{4} \sum_{\mu=1}^3 Q_\mu \approx 3W_0$$
(10)

где Q_{μ} определяет квантовый выход системы одна молекула — нано-

Рис. Квантовый выход флуоресценции ансамблей из 1, 30, 60 и 100 молекул расположенных вокруг наночастицы в зависимости от расстояния до этой наночастицы.

частица. Таким образом, полная энергия, излученная системой всего лишь в три раза больше, чем энергия, излученная одной молекулой вблизи наночастицы, независимо от числа молекул в системе.

На рисунке для сравнения показана зависимость квантового выхода для ансамблей из 1, 30, 60 и 100 молекул, случайно распределенных вокруг наночастицы золота радиуса R = 16 нм. Для средних расстояний $d \ge R/2$ (8 нм) все кривые зависимостей сводятся в одну кривую с амплитудой в три раза большей (2Q) чем для кривой с одной молекулой (Q). Это означает, что эмиссия в основном происходит за счет суперрадиационных мод. Даже на близких к наночастице расстояниях ($d \le 5$ нм) эмиссия в основном остается кооперативной, хотя и присутствуют некоторые отклонения от 3Q поведения. Для малых расстояний собственные состояния матрицы Σ_{jk} больше не расцепляются на супер- и субрадиационные моды, поскольку кооперативная эмиссия разрушается нерадиационными процессами.

3. ВЫВОДЫ

В результате эффекта кооперативной эмиссии излучения ансамбля диполей, находящихся вблизи поверхности наночастицы, образуются три плазмонные суперрадиационные моды, чье радиационное затухание скелируется как $N\Gamma_0^r$, тогда как полная излученная системой энергия увеличивается всего в три раза по сравнению с одномолекулярной системой. В этом состоит новый механизм эффекта Дике в присутствии металлической наночастицы.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, *Phys. Rev. Lett.*, **89**: 203002 (2002).
- 2. Z. Gueroui and A. Libchaber, Phys. Rev. Lett., 93: 166108 (2004).
- 3. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, *Nano Lett.*, **5**: 585 (2005).
- 4. P. Anger, P. Bharadwaj, and L. Novotny, *Phys. Rev. Lett.*, **96**: 113002 (2006).
- 5. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, *Phys. Rev. Lett.*, 97: 017402 (2006).
- 6. J. Gersten and A. Nitzan, J. Chem. Phys., 75: 1139 (1981).
- 7. J. A. Stratton, *Electromagnetic Theory* (New York: McCraw-Hill: 1941).
- 8. R. H. Dicke, *Phys. Rev.*, **93**: 99 (1954).
- 9. К. Борен, Д. Хафмен, Поглощение и рассеяние света малыми частицами (Москва: Мир: 1986).