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Now, modified magnetic particles are widely used in different biological and 

medical applications (enzyme and protein immobilization, cells separation 

and purification, MRI, targeted drug delivery, etc.). The aim of the present 

study is to reveal the ability of synthesized silica-modified magnetic particles 

to isolate DNA from the biological tissues in comparison with common 

method used the non-magnetic particles. Magnetite (Fe3O4) particles are pre-
pared via co-precipitation of Fe+2

 and Fe+3
 with NH4OH in aqueous solution. 

Silica—magnetite nanocomposites are prepared via tetraethoxysilane hydro-
lyzation in alcohol—water—ammonia mixture. The average core size of syn-
thesized magnetic nanoparticles is about 15 nm (according to the TEM data). 
Application of these compounds for DNA isolation from different biological 
objects showed significant time-savings, overall higher yields, lower RNA 

contamination and better polymerase chain reaction (PCR) amplification 

compared to commercial available silica non-magnetic particles (Promega). 
High efficiency of nucleic-acid purification by silica—magnetite particles is 

confirmed in molecular assays with reverse transcriptase—polymerase chain 

reaction (RT—PCR) assays of RNA- and DNA-virus diseases of plants, avian, 

cattle and estimation of bacterial spectrum in dairy products (probiotics). 

Модифіковані магнетні частинки зараз широко використовуються для різ-
них біологічних та медичних застосувань (іммобілізація ензимів та білків, 
виділення та очищення клітин, ЯМР, направлена доставка ліків та ін.). 
Метою цього дослідження було показати здатність синтезованих магнетних 

частинок, модифікованих кремнеземом, виділяти ДНК з різних біологіч-
них тканин у порівнянні із стандартною методою з використанням немаг-
нетних частинок. Магнетитові (Fe3O4) частинки було одержано шляхом спі-
восадження Fe+2 та Fe+3 за допомогою NH4OH у воднім розчині. Силіка-
магнетитові нанокомпозити були одержані шляхом гідролізації тетраеток-
сисилана у спирто-водяно-амонійній суміші. Середній розмір ядра синтезо-
ваних магнетних наночастинок був біля 15 нм (за даними просвітлювальної 
електронної мікроскопії). Застосування цих сполук для виділення ДНК з 
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різних біологічних тканин виявило значне заощадження часу, загальний 

більш високий вихід ДНК, більш низьку кількість домішок РНК та кращу 

ампліфікацію полімеразної ланцюгової реакції (ПЛР) у порівнянні з тра-
диційними силіційовими немагнетними частинками (Promega). Високу 

ефективність очищення нуклеїнових кислот за допомогою силіка-магнети-
тових частинок було підтверджено в молекулярно-біологічних тестах, що 

були виконані на основі зворотньої транскрипції з подальшою полімераз-
ною ланцюговою реакцією (ЗТ—ПЛР) щодо виявлення РНК та ДНК вірус-
них захворювань рослин, птахів, сільськогосподарських тварин та оцінки 

якости молочних продуктів (пробіотиків). 

Модифицированные магнитные частицы сейчас широко используются в 

различных биологических и медицинских приложениях (иммобилизация 

энзимов и белков, выделение и очистка клеток, ЯМР, направленная дос-
тавка лекарств и т.д.). Целью настоящего исследования было показать 

способность синтезированных магнитных частиц, модифицированных 

кремнеземом, выделять ДНК из различных биологических тканей по 

сравнению со стандартным методом с использованием немагнитных час-
тиц. Магнетитовые (Fe3O4) частицы были получены путем соосаждения 

Fe+2
 и Fe+3

 с помощью NH4OH в водном растворе. Кремний-магнетитовые 

нанокомпозиты были приготовлены путем гидролизации тетраетоксиси-
лана в спирто-водно-аммониевой смеси. Средний размер ядра синтезиро-
ванных магнитных наночастиц был около 15 нм (по данным просвечи-
вающей электронной микроскопии). Применение этих соединений для 

выделения ДНК из различных биологических тканей выявило значи-
тельную экономию времени, общий более высокий выход ДНК, более 

низкое количество примесей РНК и лучшую амплификацию полимераз-
ной цепной реакции (ПЦР) по сравнению с коммерчески доступными 

кремниевыми немагнитными частицами (Promega). Высокая эффектив-
ность очистки нуклеиновых кислот с помощью кремний-магнетитовых 

частиц была подтверждена в молекулярно-биологических тестах, выпол-
няемых на основе обратной транскрипции с последующей полимеразной 

цепной реакцией (ОТ—ПЦР) по выявлению РНК и ДНК вирусных заболе-
ваний растений, птиц, сельскохозяйственных животных и оценке качест-
ва молочных продуктов (пробиотиков). 
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1. INTRODUCTION 

The superior sensitivity of nucleic acid amplification technique en-
ables diagnosis of infectious diseases an early stage before positive se-
rologic results confirm an infection. These molecular methods have 

become a standard application in clinical laboratory in recent years. In 

addition to diagnosis of infectious diseases, the determination of virus 

load has gained increasing importance in medical and veterinarian vi-
rology laboratory. Although the introduction of real-time polymerase 
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chain reaction (PCR) has led to considerable progress in automating 

the amplification and detection steps of molecular biological tech-
nique, a nuclear acid isolation remains very labour-intensive when per-
formed with traditional phenol—chloroform extraction and ethanol 
precipitation methods. Additionally, these methods are too compli-
cated, time-consuming, and hazardous and produce on the last stage 

denaturated nucleic acids. 
 Modified magnetic particles now are widely used in different bio-
logical and medical applications (enzyme and protein immobilization, 

cells separation and purification, MRI, targeted drug delivery, etc.) [1, 

2]. Due to the strong magnetic properties and low toxicity of magnetic 

particles, their applications in biotechnology and medicine have gained 

significant attention. Basically, all types of magnetic particles consist 

of magnetic core with inorganic or organic shell. The target molecules 

or cells are captured on magnetic particles coated with a target-specific 

surface, and separated from unbound components by the application of 

magnetic field. The need for quick bacterial plasmid DNA and virus 

DNA/RNA preparation methods has increased the flood molecular 

protocols requiring highly purified genetic templates [1—3]. 
 Magnetic separation of DNA offer benefits over usual method due to 

rapid processing time, reduced chemical needs, the ease of separation 

[1]. Thus, the aim of the present study was to reveal the ability of syn-
thesized silica-modified magnetic particles to isolate DNA from dif-
ferent biological tissues in comparison with common method based on a 

non-magnetic sorbents. 

2. MATERIALS AND METHODS 

Materials. Ferric chloride hexahydrate, ferrous sulphate tetrahy-
drate, tetraethoxysilane were purchased from Sigma Chemical Co. 

Agarose L (low electroendosmoid) was from Amersham Biosciences 

(Uppsala, Sweden). Reagents for use in DNA isolation and analysis 

were of molecular biology grade. Ribonuclease A was obtained from 

‘Sigma’. All other chemicals and solvents used were of analytical 
grade. The water used throughout this work was the reagent-grade wa-
ter produced by Milli-Q Ultra-Pure-Water Purification System. 
Preparation of Silica—Magnetite Nanocomposites. The magnetite 

particles were prepared via co-precipitation of Fe+2
 and Fe+3

 with 

NH4OH in aqueous solution under normal conditions. Stock solutions 

of 1 M FeCl3⋅6H2O and 2 M FeSO4⋅4H2O were prepared as a source of 

iron by dissolving the respective chemicals in deionised water under 

stirring. Stock solution of 1 M NH4OH was prepared by dilution of con-
centrated NH4OH solution. The reagents solutions were mixed quickly 

in reaction vessel, and 50 ml of ammonium solution was added drop-by-
drop to reaction mixture under slow mechanical stirring. After the re-
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action completing, magnetic particles were lightly dispersed using ul-
trasound disperser, three times rinsed with deionised water to remove 

the residual surfactant and unreacted reagents. 
 Obtained magnetite was coated with silica via tetraethoxysilane hy-
drolyzation in alcohol—water—ammonia mixture. Thereto, obtained 

magnetic particles were dispersed in 25 ml of water using ultrasound 

disperser. 100 ml of ethanol, 2 ml of concentrated NH4OH were added 

to the reaction mixture at slow mechanical stirring. After that, 3 ml of 

tetraethoxysilane (TEOS) were added drop-by-drop to the reaction 

mixture. The hydrolysis of TEOS was carried out for 20 hours under 

normal conditions. 
 The resultant product was thoroughly rinsed with deionised water 

three times to remove the residual surfactant and unreacted reagents, 

and collected by magnetic separation using a permanent magnet. The 

silica—magnetite nanocomposite (MAGNAT) was stored in deionised 

water at a concentration of 10 mg/ml. 
Characterization of Magnetic Nanoparticles. The size and morphol-
ogy of magnetic nanoparticles were observed by transmission electron 

microscopy (TEM) using PEM-U (Sumy, Ukraine). Magnetic measure-
ments were performed using magnetometer with Coulomb sensor (Tver 

University, Russia). X-ray diffraction measurements performed using 

diffractometer DRON-UM1 in filtered emission CoKα with recording 

Bragg—Brentano geometry. 
Magnetic Response Characteristics. Magnetic response of synthesized 

magnetite nanocomposites was measured by monitoring an optical 
density of the magnetite adsorbent suspended in water at 600 nm. A 

spectrophotometer cuvette holder with attached neodymium (S36 

grade) magnet was used. 
Binding Capacity of Magnetite Nanocomposites. Binding capacity of 

engineered nanoparticles was tested against Marker DNA standards 

with different molecular mass. Binding and recovery of Marker DNA 

fragments (Lambda DNA/Hind III with 125-23.130 bp and 

phiX174/Hae III with 72-1.353 bp) were titrated into 2000 μg concen-
trations of nanoparticles and nonmagnetic commercial absorbent. 

Binding was performed in binding buffer for DNA purification, elu-
tion of absorbed nucleic was carried out in deionised water. Eluted 

DNA was quantified by absorbance at 260 nm. 
Purification of Plasmid DNA by Silica—Magnetite Nanocomposites. 
E.coli cells expressing the plasmid pGL3-Conrol-Vector were grown to 

log phase in culture media containing 100 μg/ml ampicillin. Bacterial 
cells were harvested from 3 ml of cell culture and treate4d with 0.05 M 

Tris-HCL μg/ml ribonuclease A. Cell lysis was performed with 0.2 M 

NaOH containing 1% of dodecil sulphate. Genomic DNA and other con-
taminants were precipitated by addition of 6M guanidine-hydrochlo-
ride, pH 5.5. After centrifugation, the cell lysates were used for plasmid 

DNA purification with synthesized nanocomposites. Binding and elu-
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tion of plasmid DNA were performed with common procedure and 

chemicals. The concentration of purified nucleic acids was calculated 

using absorbance at 260 nm. 
Purification of Total DNA from Plants, Bacterial and Mammal Tis-
sues by Silica—Magnetite Nanocomposites. Procedures of DNA ex-
traction from different biological samples were the same as it was writ-
ten above but included the stage of tissue homogenization before DNA 

extraction and usage of tissue specific buffer systems. 
Isolation of Total DNA from Milk Food Products by Silica—Magnetite 

Nanocomposites. Procedure of DNA extraction from milk product 

samples were the same as it was written as it is indicated above. 
Total RNA Extraction by Silica—Magnetite Nanocomposites from 

Avian and Mammal Tissue Samples. Purification of total RNA from 

avian tissue, embryonated eggs and porcine blood cells were performed 

with usage a commercial buffer system kits for RNA extraction (‘Am-
pliSens’, Russia). Mononuclear blood cells were harvested by centrifu-
gation and washed two times with Hank’s solution. Cell pellets were 

mixed with extracting buffer and suspension of silica—magnetite 

nanoparticles in dose of 10 μl (stoke concentration 10 mg/ml) were 

added to each samples. Sedimentation was carried out by neodymium 

(S36 grade) magnet (‘Promega’, USA). Repeated procedure of suspen-
sion/sedimentation was made. Elution of absorbed nucleic acids was 

carried out in deionised water. Eluted RNA was quantified by absorb-
ance at 260 nm. All above manipulations were done in 4°C. Purified 

RNA immediately was used for reaction of reverse transcription. 
Reverse Transcriptase Reaction (a Single cDNA Synthesis). Reaction 

mixture included 1 μg of total RNA, 0.5 μg oligo dT18 primer and incu-
bated in microtubes for 5 min in 70°C, cooled on ice. Then 1 mM dNTP, 

10 mM Tris buffer, 40 unite of RNAse inhibitor were added to each re-
action mixture and 5 min incubation in 37°C was followed. Finally, 200 

units of M-MulLV enzyme were added to reaction cocktail and it was 

incubated for 60 min in 37°C. Then, inactivation of enzyme was made 

during 10 min in 70°C. Synthesized cDNA was stored in −20°C. 
PCR Amplification. The PCR procedure had been carried out with 

primers targeting the insertion elements IS900 of Map. The mass of 

amplicons is 800 bp. The purified DNA (0 μl) was mixed with cocktail 
including PCR buffer (10 mM Tris-HCL, pH 8.3) with 50 mM KCL, 1.5 

mM MgCL, 5.0 pm/ml of each primers, 200 μM of each dNTP, 2.5 U 

Tag DNA polymerase. Cycling conditions were 20 cycles of 95°C for 1 

min, 60°C for 1 min, 72°C for 1 min. Molecular mass of amplified DNA 

fragments were detected by electrophoresis in 1% agarose with 0.5 

μg/ml ethidium bromide and 1 kb molecular mass standards (Sigma). 

The running buffer was TAE (49 mM Tris, 20 mM acetic acid, 1 mM 

EDTA, pH 8.0). Electrophoresis was carried out at 90 V for 1 hour. 

Visualisation PCR products was performed by UV illumination. 
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3. RESULTS AND DISCUSSION 

The size and morphology of magnetic particles were characterized by 

TEM (data not shown). It shows that the size of magnetic nanoparticles 

is about 15 nm. X-ray diffraction (XRD) measurements show that the 

magnetic core of the synthesized particles consists of magnetite 

(Fe3O4). Six characteristic peaks for Fe3O4 in XRD pattern (data are not 

shown) were observed for magnetic nanoparticles. These peaks reveal 
that the resultant particles were pure Fe3O4. 
 The superparamagnetic properties of the magnetic particles were 

verified by magnetization curve measurements. Saturation magneti-
zation of silica-modified magnetite particles was 37 emu/g (A⋅m2/kg). 

This saturation magnetization of magnetic particles makes them sus-
ceptible to magnetic field and therefore makes the solid and liquid 

phases separate easily. 
 Magnetic response of silica—magnetite nanoparticles has been ana-
lysed. Magnetic response was measured by placing nanoparticles in 

buffer solution in spectrophotometer cuvette attaching to magnet on it 

outside wall. Optical density of particles suspensions was measured at 

600 nm over time. More than 90% of magnetic nanoparticles at con-
centration above 0.1 mg/ml were removed from buffer solution in less 

than 10 seconds after magnetic field applying. Sedimentation of 90% 

of nanoparticles at concentration 0.01 mg/ml were observed 25 sec-
onds after applying of magnetic field. 
 The mechanism of this process could be envisaged in the following 

way. At the first stage of sedimentation, a few particles magnetize and 

self-attract to form a critical particle mass that moves toward magnet. 
At the required particle concentration for most molecular-biological 
applications, efficient removal of particles is accomplished in under 30 

seconds (Promega DNA kits). In case of our nanoparticles, about 

15 seconds is enough for optical clearing of solution. The standard 

variant of magnet was used for these investigations (Promega’s Mag-
neSilTM magnetic stand, which incorporate S36 grade neodymium rare 

earth magnet). 
Binding Capacity of Magnetite Nanocomposites. Ionic strength and 

pH are the crucial factors estimating processes binding and elution of 

nucleic acids by silica magnetite nanobeads. Absorption capacity of 

nanoparticles could be modulated in wide ranges by the ionic strength 

of binding buffer system, which is used for DNA purification. DNA is a 

polyanionic molecular due to presence of phosphate groups and inter-
acts with positively charged functional groups on silica—magnetite par-
ticles surface [3]. In order to determine the ion strength effect on of 

synthesized nanocomposites, we tested a several NaCl concentration 

ranges of 0—4 M in binding buffer. It had been found that presence of 

2M NaCl and above concentrations resulted in maximal binding of 
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plasmid DNA and marker small DNA fragments. In this study, the in-
fluence of binding buffer pH on DNA absorption of nanocomposites had 

been estimated also. As expected, pH of binding solution had no effect 

on plasmid DNA absorption by silica—magnetite nanoparticles. These 

results are in agreement with data obtained by Chen-Li Chiang [1, 6] for 

silica—magnetite nanoparticles with more diameter size (about 31 nm). 
 As revealed, the synthesized nanoparticles possessed an increased re-
covery small DNA marker fragments over commercial nonmagnetic ma-
terials (Fig. 1). This recovery was inversely related to DNA size and 

much higher recovery of smaller marker DNA was registered. Final re-
covery of small fragments was a primary function of binding since these 

DNA were efficiently eluted from nanocomposites in water. The recov-
ery of lambda marker DNA fragments was a function of both binding 

capacity and elution efficiency of synthesized nanocomposites. The lar-
ger fragments of DNA have a reduced binding capacity at these condi-
tions and reduced efficiency of elution in water at room temperature. 
Plasmid DNA Purification by Silica—Magnetite Nanocomposites. 
Obtained magnetic particles were tested for DNA isolation from E.coli 
cultures, which had been transfected with some gene-engineering con-
structions. A set of experiments with bacterial cell lysates for measur-
ing of absorption capacity of synthesized nanoparticles were per-
formed. The increasing amounts of nanoabsorbent were added to bac-
terial cell lysates prepared from 10 ml cultures of E.coli containing the 

high copy number of pGL3-Control Vector (plasmid DNA). The tradi-
tional silica absorbent of nucleic acids was used as a control. The result 

of silica magnetite nanoparticles usage was an isolation of 80 μg of 

plasmid DNA at 2.2 mg particles added to lysate. In contrast, 5.0 mg 

commercial tradition silica absorbent was required for isolation of 

equivalent amount of plasmid DNA from a 10 ml culture. The results 

demonstrated that absorbing capacity of magnetic particles was sig-

 

Fig. 1. Recovery of small (72-1.353 bp) marker DNA fragments from mag-
netic nanocomposites and commercial silica adsorbent.
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nificantly higher than that of traditional non-magnetic silica carriers. 
Application of Silica—Magnetite Nanoparticles in Molecular Diagno-
sis of Cattle and Avian Viral Diseases. The worldwide occurrence and 

re-occurrence of trans-boundary viral diseases like classical swine fever 

indicates that there is an acute need for the development of high-
capacity, powerful and reliable methods for detecting a causative viral 
and bacterial agent before they could spread to large populations and 

cause a tremendous loss. During the last one and a half decade, more 

then 40 nested polymerase chain reaction assays have been developed for 

variety of DNA and RNA viruses. False negative and positive results are 

avoided now by the using of special tools, practices and internal controls 

for purification nucleic acids and technique of amplifications. 
 In this study, we tested the possibility of synthesized nanocompo-
sites for high-effective purification of native total RNA from porcine 

and avian tissues for diagnosis of avian Bronchitis virus and virus of 

classic swine fever in domestic and wild populations [1, 2]. Results of 

reverse transcriptase—polymerase chain reaction (RT—PCR) for mo-
lecular diagnosis of viral diseases are presented in Fig. 2. The same re-
sults were found in RT—PCR assay of health and infected avian an em-
bryonated eggs by bronchitis virus [1, 2]. 
 Comparative analysis of data obtained with usage of silica—
magnetite nanocomposites and commercial silica absorbent demon-
strated a reduction of false negative samples in diagnosis these viral 
diseases and made procedure of RNA purification much more easy, 

fast and simple. 
Application of Silica—Magnetite Nanoparticles in Molecular Diag-
nosis of Anthrax. Bacillus anthracis is the etiologic agent of anthrax, 

an acute fatale disease among mammals. It was thought to differ from 

 

Fig. 2. The agarose gel electrophoresis of the RT—PCR products, which were 

obtained from tissues of health and infected swine. Lines 1, 2, 3–health ani-
mals; M–DNA markers; lines 4, 5, 6–amplified fragments of viral DNA. 



 ISOLATION OF NUCLEIC ACIDS FROM DIFFERENT BIOLOGICAL OBJECTS 1017 

Bacillus cereus, an opportunistic pathogen and cause of food poison-
ing, by presence of plasmids pXO1 and XO2, which encode the lethal 
toxin complex and poly-D-glutamic acid capsule, respectively. 
 In this set of experiments, the silica—magnetite nanoparticles were 

used in differential molecular diagnostic of Bacillus anthracis and 

non-B-anthracis bacteria. With PCR-based technique it was conformed 

the presence of both plasmids which encode capsule and toxin of Bacil-
lus anthracis in one bacterial strain which earlier was conceded as Ba-
cillus cereus and was known as weak pathogen (Fig. 3). 
 This work confirmed the fact that non-B-anthracis bacteria could 

possess the anthrax toxin genes and explained their high pathogenic 

 

Fig. 3. The agarose gel electrophoresis of the PCR amplified DNA fragments 

from bacterial vaccine strains, Bacillus cereus (anthracoides) and bacterial 
vaccine strains with protective antigen. Lines from 1 to 8–vaccine strains 

(weak immunogens); line 9–Bacillus anthracoides within capsule; line M–
DNA markers; lines from 10 to 13–vaccine strains with protective antigen 

(high immunogenic properties). 

          
                 a                                              b 

Fig. 4. The agarose gel electrophoresis of the PCR amplified virus DNA frag-
ments from sugar beet (a) and Bifidobacterium DNA from probiotic tablets 

(b). Line M–DNA markers; line 1–commercial absorbent; line 2–magnetite 

nanoparticles. Line M–DNA markers; line 1–negative control; lines from 2 

to 5–Bifidobacterium strains.
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properties in causing a severe inhalation anthrax-like illness. There-
fore, the presence of amplified DNA fragments with molecular mass of 

capsule antigen has proved the virulence of this bacteria strain and a 

potential dangerous of same vaccine drugs made on base of Bacillus 

anthracoides for personals and cattle. 
Isolation and Identification of DNA in Plant and Dairy Products. In 

this experimental set, the nanoparticles were hydrolyzed and carboxyl 
groups on there surface were inducted by oxidation. The carboxyl-
functionalized silica-magnetite nanocomposites were tested for bind-
ing of Bifidobacterium and Lactobacterium DNA from crude lysates of 

different probiotic tablets or from culture cell lyophilisates [1]. The 

binding capacity of nanoparticles was higher then traditional commer-
cial silica absorbent. The efficiency of DNA purification was con-
firmed by results of PCR amplification with specific primers for these 

bacterial strains (Fig. 4, b). 
 Comparative analysis of viral DNA detection in sugar beet was per-
formed with usage of commercial nonmagnetic and synthesized silica-
magnetite nanoparticles. As it followed from data performed in Fig. 4, 

a, the binding capacity and efficiency of tested nanocomposites were 

much more high then traditional DNA absorbent. 
 Thus, the data obtained have proved the high efficiency of synthesized 

silica-modified magnetite particles for high purification of vital and bac-
terial native DNA/RNA for nucleic acid amplification technique. 
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