PACS numbers: 31.15.ae, 31.15.es, 36.40.Qv, 61.48.-c, 71.20.Tx, 81.05.ub

Пути стабилизации молекулы бирадикального фуллерена С₇₄

А. Р. Хаматгалимов, В. И. Коваленко

Институт органической и физической химии им. А. Е. Арбузова РАН, ул. Арбузова, 8, 420088 Казань, Россия

Методом функционала плотности B3LYP/6-311G * //B3LYP/6-31G проведены квантово-химические расчеты и анализ структур различных изомеров фуллерена $C_{74}H_2$. Показано, что в соответствии со структурными и энергетическими характеристиками наиболее стабильным является изомер $C_{74}H_2$ с симметрией C_{3h} : на периферии феналенил-радикальной субструктуры появляется альтернирование двойных и простых связей. Выявлено, что присоединение водорода в гидридах фуллерена приводит к перераспределению электронной плотности, что понижает симметрию фуллереновой клетки до C_{3h} . Установлено, что экзоэдральные связи C-H являются сильнее соответствующих эндоэдральных связей.

Методою функціоналу густини B3LYP/6-311G*//B3LYP/6-31G виконано квантово-хемічні розрахунки та аналіза структур різних ізомерів фуллерену $C_{74}H_2$. Показано, що відповідно зі структурними й енергетичними характеристиками найбільш стабільним є ізомер $C_{74}H_2$ із симетрією C_{3h} : на периферії феналеніл-радикальної субструктури з'являється альтернування подвійних і простих зв'язків. Виявлено, що приєднання водню в гідридах фуллерену призводить до перерозподілу електронної густини, що знижує симетрію фуллеренової клітки до C_{3h} . Встановлено, що екзоедральні зв'язки C-H є сильнішими за відповідні ендоедральні зв'язки.

Quantum-chemical calculations and analysis of structures of various isomers of $C_{74}H_2$ fullerene are carried out using density functional theory (B3LYP/6-311G*//B3LYP/6-31G). As shown, according to structural and energy characteristics, the most stable $C_{74}H_2$ isomer structure has C_{3h} symmetry; there is an alternation of double and single bonds at the periphery of phenalenyl-radical substructure. As revealed, the hydrogenation in fullerene hydrides results in redistribution of electron density that diminishes a symmetry of fullerene cage to C_{3h} . Exohedral C–H bonds are stronger than corresponding endohedral bonds.

Ключевые слова: фуллерен C_{74} , гидрид фуллерена $C_{74}H_2$, квантово-хими-

ческие расчеты.

(Получено 30 марта 2010 г.)

1. ВВЕДЕНИЕ

Стабилизация высших фуллеренов является перспективной задачей для получения веществ с новыми необычными свойствами. Нестабильность фуллеренов может быть вызвана наличием в молекуле неспаренных электронов или открытой электронной оболочки и/или напряженностью молекулы, определяемой ее топологией при замкнутой оболочке [1]. «Пропавшие» фуллерены C_{74} и C_{72} являются характерными примерами этих двух типов нестабильности, соответственно [2, 3]. Сигналы этих фуллеренов наблюдали только в масс-спектре экстрактов сажи [4–6]. Тем не менее, известны и получены их различные эндоэдральные металлофуллерены: $Ca@C_{74}$, $Sc@C_{74}$, $Sc@C_{74}$ и др. [7–12]. Результаты теоретических расчетов структуры фуллерена C_{74} и его эндоэдральных металлофуллеренов были представлены в многочисленных исследованиях [13–17].

Ранее нами было показано на основе разрабатываемой методики анализа распределения π -связей и последующих квантово-химических расчетов [18], что причиной нестабильности фуллерена C_{74} является его бирадикальная структура, обусловленная наличием двух феналенил-радикальных субструктур [2] (рис. 1). Следовательно, основываясь на известной структуре молекулы можно предположить возможные пути стабилизации фуллерена C_{74} (и других фуллеренов, имеющих подобную бирадикальную структуру, например, изомеры 3 (C_{2v}) и 4 (D_3) фуллерена C_{80} [19], изомеры 3

Рис. 1. Диаграмма Шлегеля фуллерена C_{74} с распределением двойных и делокализованных π -связей (все пентагоны даны серым цветом).

 (C_s) , 8 (C_2) и 9 (C_2) фуллерена C_{84}).

Стабилизация в данном случае будет означать, по сути, различные способы получения структуры с закрытой электронной оболочкой. Это, например, донирование дефицитных электронов на фуллереновую оболочку эндоэдральным атомом; или образование связи между неспаренным электроном фуллерена и электроном другой молекулы, например посредством реакции присоединения (например, синтез молекулы $C_{74}H_2$ или аналогичной $C_{74}R_2$) или реакции полимеризации. Действительно, некоторые фуллерены, включая C_{74} , могут легко полимеризоваться и деполимеризоваться в разных условиях [20]. Так, в работе [20] было предложено существование стабильной двухмерной гексагональной сети полимерной формы C_{74} .

Для исследования стабилизации фуллерена C_{74} в реакциях присоединения нами были проведены квантово-химические расчеты (B3LYP/6-31 G^* //B3LYP/6-31G) энергетических и геометрических параметров различных изомеров фуллерена $C_{74}H_2$. Расчеты проводились с использованием программы Gaussian [21]. Расчет и анализ нормальных колебаний подтвердил соответствие оптимизированных структур энергетическим минимумам на поверхностях потенциальной энергии.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Гипотетические молекулы $C_{74}H_2$ были построены ковалентным присоединением двух атомов водорода к паре центральных атомов углерода обеих феналенил-радикальных субструктур, лежащим на оси симметрии C_3 (рис. 1). Это было проведено тремя способами: в первом случае два атома водорода располагались снаружи углеродной оболочки (рис. 2, a), во втором случае — внутри (рис. 2, b), а в третьем случае два атома водорода были расположены и внутри, и

Рис. 2. Молекулярные структуры гипотетических изомеров фуллеренов $C_{74}H_2$.

снаружи фуллереновой оболочки (рис. 2, в).

Согласно структурным и энергетическим характеристикам (табл. 1), наиболее энергетически выгодным является фуллерен $C_{74}H_2$ с симметрией C_{3h} с атомами водорода снаружи углеродной оболочки

ТАБЛИЦА 1. Относительные энергии E (ккал/моль) и энергетическая щель ВЗМО–НВМО (эВ) исследуемых изомеров $C_{74}H_2$.

Изоморы С. Ц	j	E	ВЗМО	-НВМО
Изомеры $C_{74}H_2$ —	6-31G	$6\text{-}311\mathrm{G}^*$	6-31G	$6\text{-}311\mathrm{G}^*$
a (C _{3h})	0,00	0,00	0,96	0,90
a (D_{3h})	4,13	5,36	0,63	0,60
b (D_{3h})	74,36	66,05	1,16	1,11
$c(C_3)$	37,27	35,00	1,02	0,99

ТАБЛИЦА 2. Длины связей (E) на границе феналенил-радикальной и индаценовой субструктур в изомерах $\mathrm{C}_{74}\mathrm{H}_2$.

		Изомеры С	$_{\mathbf{i}}\mathrm{H}_{2}$	
B D C A			c (C_3)
	a (C _{3h})	b (<i>D</i> _{3<i>h</i>})	c-1 *	c -2*
A	1,463	1,438	1,467	1,444
В	1,409	1,438	1,404	1,436
\mathbf{C}	1,394	1,441	1,390	1,435
D	1,468	1,441	1,473	1,443
\mathbf{E}	1,438	1,427	1,445	1,424
${f F}$	1,420	1,436	1,426	1,437
G	1,518	1,466	1,518	1,467

 $^{^{*}}$ с-1 и с-2 — полусферы с атомами водорода снаружи и внутри соответственно.

ТАБЛИЦА 3. Длины связей С–H (E) в фуллеренах $C_{74}H_2$, $H(C_{59}B)$, $H(C_{59}N)$, $H(C_{59}P)$.

Изомеры С ₇₄ Н ₂	СН		[22, 23]	
изомеры $O_{74}II_2$	$\mathrm{C}_{74}\mathrm{H}_2$	H(C ₅₉ B)	$H(C_{59}N)$	H(C ₅₉ P)
a (C_{3h})	1,14	1,16	1,12	1,10
b (D_{3h})	1,11	1,11	1,09	1,09
c (C ₃)	1,11 и 1,14			_

(рис. 2, a): существует альтернирование двойных и простых связей на границе феналенил-радикальной субструктуры (табл. 2).

Оптимизация $C_{74}H_2$ с атомами водорода внутри углеродной сферы (изомер $C_{74}H_2$ -b) показала, что структура имеет симметрию D_{3h} . Атомы водорода внутри фуллереновой сферы (рис. 2, δ) существенно понижают относительную стабильность фуллерена. Альтернировние связей на границе феналенильной и индаценовой субструктур в $C_{74}H_2$ -b отсутствует (см. табл. 2). Эти результаты согласуются с работами [22, 23], в которых рассматривалась возможность химической связи внутри различных гетерофуллеренов. Энергия «внутренней» связи меньше, чем энергии тех же связей, образующихся снаружи фуллереновой сферы. То есть при экзо-присоединении образуется более сильная связь, что подтверждается также длинами соответствующих связей (табл. 3).

В случае с фуллереном $C_{74}H_2$, в котором атомы водорода расположены внутри и снаружи углеродной оболочки (изомер $C_{74}H_2$ -с; рис. 2, e), углеродную оболочку можно мысленно «разделить» на две полусферы, структура которых будет идентична изомерам $C_{74}H_2$ -а и $C_{74}H_2$ -b, соответственно. Действительно, с одной стороны фуллереновой сферы наблюдается альтернирование связей, как и в случае с фуллереном, в котором атомы водорода снаружи, а с другой — наблюдается аналогичное искажение сферы, как в случае с фуллереном с атомами водорода внутри.

Анализ распределения электронной плотности показал, что в гидридах фуллерена происходит перераспределение электронной плотности с атомов водорода и атомов углерода феналенил-радикальной субструктуры на его центральный атом, что понижает симметрию молекулы фуллерена до C_{3h} (табл. 4).

Это отличается от исходной структуры молекулы C_{74} , где на центральном атоме феналенил-радикальной субструктуры наблюдается дефицит электронной плотности [2]. Также как и в случае с длинами связей, в фуллерене $C_{74}H_2$ -с распределение электронной плотности в двух различных полусферах аналогично таковым в двух других изомерах фуллерена $C_{74}H_2$ - а и $C_{74}H_2$ - b) (табл. 4).

3. ВЫВОДЫ

Таким образом, для $C_{74}H_2$ согласно структурным и энергетическим характеристикам наиболее стабильной является структура с симметрией C_{3h} . Выявлено, что в гидридах фуллеренов происходит перераспределение электронной плотности с атомов водорода и атомов феналенил-радикальной субструктуры на его центральный атом. Установлено, что экзо-связи C-H являются прочнее соответствующих эндо-связей. Судя по результатам расчетов, стабильность молекулы гидрида фуллерена $C_{74}H_2$ предполагает возможность его синтеза.

ТАБЛИЦА 4. Распределение электронной плотности в исследуемых изомерах $C_{74}H_2$.

				Изо	Изомеры $C_{74}H_2$			
Atombi	C_{74} (D_{3h}))) "	١.	, u,) ၁	$c(C_3)$	
		$a (c_{3h})$	/3h /	$O(\mathcal{L}_{3h})$	-S	c-1**	c-2	2
a (2)*	0,0471	-0,2902	902	-0,3631	-0,5	-0,2869	-0,3673	673
(9) q	-0,0254	0,0348	348	0,0679	0,0	0,0326	0,0699	399
c(12)	-0.0248	-0,0215	-0,0084	-0.0581	-0,0154	-0.0154 -0.0034	-0.0569	-0.0588
(9) p	0,0574	0,0403	103	0,0734	0,0	0,0376	0,0	0,0733
e (12)	-0,0049	-0,0123	-0,0068	0,0072	-0,0134	-0.0134 -0.0064	0,0081	0,0064
f (6)	0,0539	0,0556	556	0,0457	0,0	0,0574	0,0442	142
g (12)	-0,0038	-0,0072	-0,0044	-0,0118	-0,0038	-0,0038 $-0,0029$	-0,0102	-0,0100
h(12)	-0,0211	-0,0200	-0,0213	-0,0236	-0.0269	-0,0263	-0,0189	-0,0226
i (6)	-0,000	0,0008	0,0025	-0,0058),0–	-0,0035	-0,0046	046
H(2)	1	0,1989	686	0,3373	0,18	0,19619	0,3228	228

Примечание: * Обозначения атомов в соответствии с рис. 1, δ (в скобках — число эквивалентных атомов). * с-1 и с-2 — полусферы с атомами водорода снаружи и внутри соответственно.

Работа поддержана Грантом Президента РФ. Расчеты проведены в Суперкомпьютерном центре коллективного пользования Казанского научного центра РАН.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. V. I. Kovalenko and A. R. Khamatgalimov, *Russ. Chem. Rev.*, **75**, No. 11: 981 (2006).
- 2. V. I. Kovalenko and A. R. Khamatgalimov, *Chem. Phys. Lett.*, **377**, Nos. 3-4: 263 (2003).
- 3. V. I. Kovalenko and A. R. Khamatgalimov, Abstracts 6th Biennial Workshop 'Fullerenes and Atomic Clusters—IWFAC'2003' (July, 2003, St. Petersburg).
- 4. T. S. M. Wan, H. W. Zhang, T. Nakane, Z. Xu et al., J. Am. Chem. Soc., 120: 6806 (1998).
- 5. R. Hatakeyama, T. Hirata, H. Ishida, T. Hayashi, and N. Sato, *Thin Solid Films*, **316**: 51 (1998).
- 6. S. Stevenson, P. Burbank, K. Harich, Z. Sun et al., J. Phys. Chem. A, 102: 2833 (1998).
- 7. H. Shinohara, Rep. Prog. Phys., 63: 843 (2000).
- 8. K. Kobayashi and S. Nagase, Chem. Phys. Lett., 302: 312 (1999).
- 9. P. Kuran, M. Krause, A. Bartl, and L. Dunsch, Chem. Phys. Lett., 292: 580 (1998).
- 10. S. Nagase and K. Kobayashi, Chem. Phys. Lett., 276: 55 (1997).
- 11. T. Okazaki, Y. Lian, Z. Gu, K. Suenaga, and H. Shinohara, *Chem. Phys. Lett.*, **320**: 435 (2000).
- 12. M. D. Diener and J. M. Alford, Nature, 393: 668 (1998).
- 13. Y. Lin, W. Cai, and X. Shao, J. Mol. Struct. THEOCHEM, 760: 153 (2006).
- 14. B.-Y. Sun, T. Inoue, T. Shimada, T. Okazaki et al., *J. Phys. Chem. B*, **108**: 9011 (2004).
- 15. D. Liu and F. Hagelberg, Int. J. Quant. Chem., 107: 2253 (2007).
- 16 C. Tang, S. Fu, K. Deng, Y. Yuan et al., *J. Mol. Struct. THEOCHEM*, **867**: 111 (2008)
- 17. Z. Slanina, F. Uhlik, S.-L. Lee, L. Adamowicz, and S. Nagase, *Int. J. Quant. Chem.*, **107**: 2494 (2007).
- 18. V. I. Kovalenko and M. V. Semyashova, Abstracts 4th Biennial Workshop 'Fullerenes and Atomic Clusters—IWFAC'99 (July, 1999, St. Petersburg).
- 19. A. R. Khamatgalimov, L. R. Mukhametshafikova, and V. I. Kovalenko, Abstracts 9th Biennial Workshop 'Fullerenes and Atomic Clusters—IWFAC'2009 (July, 2009, St. Petersburg).
- 20. S. Okada and S. Saito, Chem. Phys. Lett., 321: 156 (2000).
- 21 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria et al., *Gaussian 98* (*Revision A. 1*) (Pittsburgh: Gaussian: 1998).
- 22. A. L. Buchachenko and N. N. Breslavskaya, Rus. Chem. Bull., 51 (2005).
- 23. A. L. Buchachenko and N. N. Breslavskaya, Rus. Chem. Bull., 1239 (2007).