© 2010 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 62.20.Qp, 68.37.Ps, 71.15.Pd, 78.66.Jg, 81.15.Gh, 81.40.Pq, 82.80.Pv

Влияние потенциала смещения на подложке на структурные и механические свойства пленок *a*-SiC:H

В. И. Иващенко, О. К. Порада, Л. А. Иващенко, С. Н. Дуб, И. И. Тимофеева, Л. А. Гришнова

Институт проблем материаловедения им. И.Н.Францевича НАН Украины, ул. Кржижановского, 3, 03142 Киев, Украина

В работе исследовано влияние отрицательного потенциала смещения на подложке (U_D) на структуру и механические свойства аморфного карбида кремния, полученного методом газофазового осаждения, усиленного высокочастотной плазмой (PECVD). Пленки охарактеризованы с помощью атомно-силового микроскопа (ACM), ИК-абсорбционной спектроскопии, рентгеновской дифракции и оже-спектроскопии. Нанотвердость, модуль упругости и износостойкость пленок достигают максимума для $U_D \sim -200$ В. Для объяснения механизма упрочнения пленок использовано моделирование осаждения пленок SiC на кремниевые подложки. Как следует из экспериментальных и теоретических исследований, наблюдаемое усиление механических характеристик, обусловленное ростом отрицательного потенциала смещения на подложке, является следствием улучшения аморфной структуры, уплотнения пленки и уменьшения шероховатости ее поверхности.

У роботі досліджено вплив неґативного потенціялу зсуву на підложжі (U_D) на структуру й механічні властивості аморфного карбіду кремнію, одержаного методою газофазового осадження, посиленого високочастотною плазмою (PECVD). Плівки охарактеризовано за допомогою атомовосилового мікроскопа (ACM), ІЧ-абсорбційної спектроскопії, Рентґенової дифракції й Оже-спектроскопії. Нанотвердість, модуль пружности й зносостійкість плівок досягають максимуму для $U_D \sim -200$ В. Для пояснення механізму зміцнення плівок використано моделювання осадження плівок SiC на кремнійові підложжя. Як випливає з експериментальних і теоретичних досліджень, спостережуване посилення механічних характеристик, обумовлене ростом неґативного потенціялу зсуву на підложжі, є наслідком поліпшення аморфної структури, ущільнення плівки й зменшення шорсткости її поверхні.

Plasma-enhanced chemical vapour deposition technique is used to prepare

277

amorphous silicon carbide films to examine an effect of substrate negative bias (U_D) on film properties. The films are characterized by an atomic force microscopy, infrared absorption spectroscopy, X-ray diffraction, and Auger spectroscopy. The nanohardness, elastic modulus, and wear resistance of the films reach maximums for $U_D \sim -200$ V. To explain film-hardening mechanism, simulation of SiC films deposition on silicon substrates is carried out. Both experimental and theoretical investigations point out that the observed enhancement of the mechanical characteristics is a consequence of an improvement of the amorphous structure, film compactness, and decrease of surface roughness caused by increasing of negative substrate bias.

Ключевые слова: *a*-SiC:H пленки, PECVD, метилтрихлорсилан, механические свойства, моделирование методом молекулярной динамики.

(Получено 15 апреля 2010 г.)

1. ВВЕДЕНИЕ

Аморфные гидрогенизированные пленки карбида кремния (*a*-SiC:H) имеют уникальные механические и оптикоэлектронные свойства [1– 4]. Усиленный плазмой газофазовый метод осаждения (PECVD) наиболее часто используется для синтеза карбида кремния. Именно этот метод, позволяет осадить пленки SiC, которые демонстрируют хорошие механические и полупроводниковые свойства [1, 2]. Было показано, что *a*-SiC:H пленки, осажденные из метилтрихлорсилана (MTXC, CH₃SiCl₃), являются перспективными износостойкими покрытиями [3]. Несмотря на всесторонние исследования этих пленок, влияние потенциала смещения на подложке на свойства пленок еще не выяснены.

Целью данной работы является восполнить этот пробел в исследовании *a*-SiC:H пленок, полученных методом PECVD из MTXC. В данной работе всесторонне исследованы нанотвердость, модуль упругости, абразивная износостойкость, морфология поверхности и картина химических связей пленок, осажденных на различные подложки. Для выяснения влияния смещения на подложке на кинетику роста и свойства пленок были выполнено моделирование методом молекулярной динамики (МД) процесса осаждения пленок SiC на кремниевых подложках.

2. ПОДРОБНОСТИ ЭКСПЕРИМЕНТА И РАСЧЕТЫ

Пленки *a*-SiC:H были нанесены из метилтрихлорсилана (MTXC, CH₃SiCl₃), в качестве основного прекурсора. Значение потенциала смещения на подложке UD варьировались от 0 до -300 В. Температура подложки и мощность разряда были $300-350^{\circ}$ C и 0,6 Вт/см² соответственно. Отношение расхода газов H₂:MTXC+H₂ равнялось

5. Давление газа в реакторе составляло 0,2 Торр. Тонкие покрытия толщиной ~0,2 мкм осаждались в течение 45 мин. Перед каждым осаждением, система очищалась аргоновой плазмой. Подложками служили легированные бором пластины кристаллического кремния (100). После очистки в 10% водном растворе HF и промывке в деионизированной воде подложки сразу же помещались на нижний электрод PECVD системы. Кроме того, перед процессом осаждения, подложки травились в водородной плазме в течение 5 мин.

Элементный состав пленок был исследован с помощью ожеспектрометра JAMP-10S (JEOL, Япония). Толщина пленок измерялась с помощью микропрофилометра Альфа-Step 200 (Tencor Instruments, USA) и прибора calowear (для предварительной оценки толщины пленки). Морфология поверхности изучалась с помощью атомно-силового микроскопа (АFM, Наноскоп IIIа). Инфракрасные спектры поглощения были измерены на спектрометре Specord-80. Структурный анализ проводили на рентгеновском дифрактометре ДРОН-2 (СССР). Наноиндентирование проводилось на наноинденторе Nano Indenter II[™] (MTS Systems Inc., Oak Ridge, USA. Для оценки абразивной износостойкости тонких пленок был использован тестер calowear с вращающимся шариком из твердой стали в присутствии алмазной пасты (0,1 мкм), который контактировал с испытуемым плоским образцом с образованием на нем кратеров износа. Кратеры износа были проанализированы с помощью оптического микропрофилометра высокого разрешения «Микрон-Альфа» (Украина).

Моделирование осаждения пленок проводили методом молекулярной динамики (МД) на основе эмпирического потенциала. Рассматривалась система, состоящая из 1344 атомов, т.е. 768 атомов кремния, принадлежащих подложке, и 576 атомов, принадлежащих парам SiC в прямоугольной ячейке $2,172\times2,172\times20,0$ нм. Учтены периодические граничные условия только в *X*- и *Y*-направлениях.

Конденсация пленки моделировалась с помощью МД метода в условиях постоянного числа частиц-объема-температуры (NVT-ансамбль), основанного на Tersoff-потенциале [5]. Смоделированная ячейка содержит атомы (001) Si подложки с конфигурацией ($4 \times 4 \times 6$) a_0 (a_0 — параметр решетки *c*-Si) и верхний резервуар SiC, разбавленного паром. Резервуар с паром термостатирован для поддержания необходимой температуры пара. Нормальные силы направлены на подложку и приложены к каждому атому в резервуаре. Система была неподвижной благодаря зафиксированному нижнему слою подложки. Следующие шесть слоев подложки были термостатированы для контроля температуры подложки. Контролируемыми параметрами осаждения были: температура пара (T_{G}), нормальная сила, приложенная к частице (F_N), температура подложки (T_S). Перед осаждением пар и подложка были уравновешены в течение 5 псек. Каждое осаждение проводилось при $T_G = 1000$ К, $T_S = 600$ К и $F_N = 0.08$, 12 и 0.15 нН в течение 22 псек. Мы исследовали свежеосажденные пленки, то есть

пленки, которые не были уравновешенными после осаждения, и отожженные образцы, которые были уравновешены при температуре равной T_s в течение 50 псек., далее охлаждены до 300 К и уравновешены в течение 5 псек. Для оценки адгезии пленок мы вычислили разницу между потенциальными энергиями образцов до и после смещения всех атомов пленки в Z-направлении относительно подложки до 0,8 нм. Расстояния 0,8 нм было достаточно, так как атомы подложки и пленки на этом расстоянии не взаимодействуют.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Анализ рентгеновских дифракционных спектров пленок, нанесенных на подложку Si (100) показал, что пленки рентгеноаморфные. На рисунке 1 приведены ACM-фотографии поверхности пленок, полученных при $U_D = 0$ и -100 В. Анализ морфологии поверхности обоих образцов, показывает, что поверхность пленки состоит из полусферических фрагментов. Применение отрицательного смещения на подложке приводит к диспергированию полусферических объектов.

Инфракрасные спектры пленок показаны на рис. 2. Усиление интенсивности спектра около 800 см⁻¹ представляет собой главным образом Si-C колебания, в то время как связи в области 1000 см⁻¹ относятся к Si-(CH₂),-Si и Si-O колебаниям [2]. Зона, характеризующая связи в районе 800 см⁻¹, резко возрастает с увеличением отрицательного потенциала U_D , что указывает на усиление Si-C колебаний. Увеличение потенциала смещения приводит к увеличению содержания водорода [1]. Мы предполагаем, что понижение спектральной кривой в районе 1000 см⁻¹ с увеличением U_D является следствием ослабления Si-O колебаний. Кислород адсорбируется в основном из окружающего воздуха. При этом, чем плотнее пленка, тем меньше

Рис. 1. АСМ-изображения *a*-SiC:Н пленок при $U_D = 0$ (*a*) и $U_D = -100$ В (б).

Волновое число, 1/см

Рис. 2. Инфракрасный спектр поглощения *a*-SiC:Н пленок, осажденных при различных потенциалах смещения на подложке.

адсорбированного кислорода. Из вышеизложенного следует, что увеличение отрицательного потенциала подложки приводит к повышению Si-C связей и уплотнению пленки. Здесь и далее термин «повышение U_D » означает увеличение по абсолютной величине отрицательного смещения на подложке.

На рисунке 3 показано влияние потенциала смещения на подложке на нанотвердость (H), модуль упругости (E), соотношение H/E и абразивную износостойкость (k). H и E увеличиваются с увеличением U_D до -200 B, а затем уменьшается. Поскольку наноиндентирование было проведено с одинаковой глубиной вдавливания индентора для всех пленок (до 70 нм), уменьшение H и E могут быть отнесены к меньшей толщине пленок, осажденных при $U_D = -300$ B (180 нм), по сравнению с толщинами пленок при U_D (около -200 нм). Соотношение H/E достигает плато после $U_D = -200$ B. Коэффициент износостойкости k увеличивается с потенциалом смещения на подложке, что может быть связано с уменьшением коэффициента трения из-за снижения шероховатости поверхности (см. рис. 1). Принимая во внимание предыдущие выводы, наблюдаемое увеличение механических характеристик при увеличении U_D можно объяснить укреплением Si-C связей и увеличением плотности a-SiC:H пленок.

Для выяснения механизма формирования пленок, рассмотрим результаты МД моделирования. На рисунке 4 (слева) мы показываем атомные конфигурации только что осажденных *a*-SiC пленок. Серия образцов была смоделирована в зависимости от сил, действующих на частицы. В МД расчетах мы проводим аналогию между нормально приложенной силой к частице F_N и отрицательным потенциалом на подложке в PECVD процессе. Принята следующая аббревиатура для пленок: $T_{C}(100)-F_N(08)-T_S(06)$, что означает, что пленка 12–10–06 была создана при $T_G = 1000$ К, $F_N = 0,08$ нН и $T_S = 600$ К. Как видно из рис. 4, что с увеличением F_N верхние слои подложки аморфизируют-

Рис. 3. Нанотвердость (*H*), модуль упругости (*E*), соотношение H/E и износостойкость относительно кремниевой подложки (*k*) как функции отрицательного потенциала на подложке U_D .

ся. Кроме того, увеличение F_N приводит к снижению шероховатости поверхности пленки в согласии с экспериментом.

Плотности образцов как функции расстояния в Z направлении для только что осажденных и отожженных образцов, — N(Z), представлены на рис. 4 (правая панель). Результаты указывают, что плотность только что осажденных пленок возрастает с увеличением F_N . Сравнение плотностей N(Z) только что осажденных и отожженных образцов показывает, что толщина подложки увеличивается после отжига, что приводит к уменьшению ее плотности. В отожженных образцах аморфная зона уже по сравнению с таковой в только что осажденных образцах. Из этих результатов мы можем заключить, что подложки во всех неотожженных образцах нахо-

282

Рис. 4. Левая панель: проекции атомных конфигураций на x-z-плоскости только что осажденных *a*-SiC пленок. Обозначение образцов: $T_G(1000 \text{ K})$ – $F_N(0,08, 0,12 \text{ и } 0,15 \text{ нH})-T_S(600 \text{ K})$ (см. текст). Полые и заштрихованные кружки — атомы подложки и пленки, соответственно. Большие и малые кружки — атомы Si и C, соответственно. Показана только половина атомов подложки. Правая панель: плотности N(Z) только что осажденных (сплошная линия) и отожженных (пунктирная линия) образцов в зависимости от расстояния в Z-направлении (Z).

дятся под напряжением сжатия. Как видно из рис. 4, неотожженные пленки также находятся под напряжением сжатия. Соответственно, отжиг приводит к уменьшению остаточного напряжения сжатия, как в пленках, так и в подложках.

Средняя скорость роста (r_D) , энергии адгезии (ECoh) и число в четырехкоординированных (T4) атомах (n_4) неотожженных и отоженных пленок показаны на рис. 5 как функции приложенной силы F_N . Ниже мы проанализируем свойства *a*-SiC пленок в зависимости от этого параметра. Теоретические расчеты прогнозируют увеличение скорости роста пленки с F_N . В РЕСVD процессе, средняя скорость роста *a*-SiC:Н пленок увеличивается с U_D до -200 B, а затем не-

Рис. 5. Средняя скорость роста (r_D) , энергия адгезии $(E_{\text{СОН}})$ и среднее число четырехкоординированных атомов (n_4) в неотожженных (сплошная линия) и отожженных (пунктирная линия) пленках, как функции нормальной силы (F_N) . Горизонтальная линия обозначает энергию когезии, необходимой для разделения подложки на две равные части в *Z*-направлении.

сколько снижается. Соответственно, диапазон F_N (0,04–0,15 нH) должен соответствовать диапазону изменения U_D до -200 В. Кроме того, в пользу того говорит замедление роста пленок а-SiC при приближении к $F_N = 0,15$ нН (см. рис. 5). Энергия адгезии только что осажденных и отожженных пленок к кремниевой подложке ECoh усиливается при росте F_N . Значение $E_{\text{СОН}}$ всех пленок увеличивается при отжиге. Адгезия пленок увеличивается за счет расширения переходной зоны подложка-пленка. Адгезия отожженных пленок при высоких F_N к кремниевой подложке оказалась выше энергии сцепления между слоями подложки. Мы не нашли прямого экспериментального подтверждения наших результатов по изменению адгезии пленки в зависимости от потенциала смещения на подложке. Тем не менее, предварительные результаты скретч-тестирования (не показаны здесь) указывают, что адгезия пленок, полученных при высоких потенциалах смещения на подложке, сильнее по сравнению с адгезией пленок, осажденных при низких смещениях на подложке.

И, наконец, отклонение аморфной решетки от идеальной тетраэдрической структуры может быть оценено путем учета числа T4 атомов в *a*-SiC пленках. Чем выше число четырехкоординированных атомов n_4 в *a*-SiC, тем ближе аморфная структура к идеальной тетраэдрической [6]. Рисунок 5 показывает, что n_4 увеличивается с F_N . Это означает, что применение нормальной силы к каждому атому, направленной к подложке (прикладывание потенциала смещения к подложке по аналогии с PECVD-процессом) приводит к улучшению аморфной структуры пленки. Для PECVD *a*-SiC:H пленок это подтверждается усилением S-C-колебаний около 800 см⁻¹ в инфракрасных спектрах поглощения [1, 2] (см. рис. 2).

4. ВЫВОДЫ

Мы осадили *a*-SiC:Н пленки на кремниевые подложки при различных потенциалах смещения на подложке. Пленки были исследованы с помощью экспериментальных и теоретических методов. Наблюдаемое увеличение нанотвердости, модуля упругости и абразивной износостойкости при увеличении смещения на подложке объясняется: уплотнением пленки; улучшением ее аморфной структуры; уменьшением шероховатости поверхности пленки. Результаты исследования показывают, что *a*-SiC:Н пленки, осажденные при высоких потенциалах смещения на подложке перспективны в качестве износостойких покрытий.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. L. Calcagno, A. Hallen, R. Martins, and W. Skorupa, *Amorphous and Micro*crystalline Silicon Carbide: Materials and Applications (Elsevier: Amsterdam: 2001), **508**.
- 2. J. Bullot and M. P. Schmidt, Physica Status Solidi (b), 143: 345 (1987).
- 3. O. K. Porada, V. I. Ivashchenko, L. A. Ivashchenko, G. V. Rusakov, S. N. Dub, and A. I. Stegnij, *Surf. Coat. Techn.*, **180–181**: 122 (2004).
- 4. M. A. El. Khakani, M. Chaker, M. E. O'Hern, and W. C. Oliver, *J. Appl. Phys.*, 82: 4310 (1997).
- 5. J. Tersoff, *Phys. Rev. B*, **39**: 5566 (1989).
- 6. V. I. Ivashchenko, P. E. A. Turchi, V. I. Shevchenko, and J. A. Shramko, *Phys. Rev. B*, **70**: 115201–12 (2004).