А. В. ИВАЩУК

Украина, г. Киев, Науч.-производств. предприятие "Сатурн"

Дата поступления в редакцию 21.07 2000 г. Оппонент к. ф.-м. н. Е. М. СЕМАШКО

ТЕПЛОВЫЕ РЕЖИМЫ ФОРМИРОВАНИЯ ОМИЧЕСКИХ КОНТАКТОВ К АРСЕНИДУ ГАЛЛИЯ

Предложены устройство для термообработки пластин и тепловые режимы вплавления омических контактов к n-GaAs с учетом влияния массы образца.

В подавляющем большинстве сверхчувствительных приемных и приемно-передающих систем с низким и сверхнизким уровнем шумов в настоящее время используются полевые транзисторы с барьером Шоттки (ПТШ) на GaAs, транзисторы с высокой подвижностью электронов на гетероструктурах A₃B₅ самых разнообразных конструкций или монолитные интегральные схемы (МИС) на их основе, в которых качество омических контактов (ОК) является одним из основных факторов, определяющих СВЧпараметры приборов и их эксплуатационные характеристики. Поэтому вопросы совершенствования технологии формирования ОК разработчики транзисторов никогда не обделяли вниманием.

Из анализа, проведенного в работах [1, 2], следует, что для реализации высококачественного сплавного омического контакта необходимо обеспечить максимально возможное равномерное смачивание поверхности полупроводника расплавом AuGe. Проплавление полупроводника должно быть неглубоким и равномерным, а рекристаллизация из расплава — быстрой. Все вместе это гарантирует образование на границе "металл — полупроводник" тонкого высоколегированного слоя GaAs [3, 4] и исключение микрокоалесценции тонких пленок при формировании контакта [5]. В связи с этим возникает необходимость исследования влияния на качество ОК целого ряда технологических факторов, в той или иной мере связанных с процессом термообработки.

Результаты исследования влияния температурных режимов обработки на параметры ОК ранее нами были представлены в работах [6, 7]. В данной работе описано устройство для термообработки образцов, позволяющее оптимизировать процессы рекристаллизации в омических контактах, а также рассмотрено влияние массы образца на процесс формирования ОК.

Образцы

Известно, что наиболее чувствительны к технологии формирования ОК эпитаксиальные структуры (ЭС) GaAs с низкой (N_d ~ 1·10¹⁶-1·10¹⁷ см⁻³)

концентрацией доноров [7]. Поэтому в данной работе для исследований использовались ЭС GaAs с $N_d \sim 1.10^{17}$ см⁻³, т. к. ЭС с более низкой концентрацией при изготовлении СВЧ ПТШ обычно не применяются. Толщина эпитаксиального слоя составляла ~0,3 мкм.

Перед нанесением металлизации образцы протравливались в аммиачно-перекисном травителе. Использовалась металлизация двух типов: 1) AuGe (50 нм) — Au (250 нм); 2) AuGe (50 нм) — Ni (20 нм) — Au (200 нм). Условия нанесения металлизации более детально описаны в работах [7—9]. Формирование омических контактов осуществлялось в печи в атмосфере сухого водорода (точка росы ниже -60°C).

Устройство для термообработки

Помимо точности поддержания заданных режимов в процессе термообработки (температуры, времени, состава газовой среды и т. д.), важными параметрами, оказывающими влияние на процессы формирования границы раздела "металл — полупроводник", являются скорости нагрева и охлаждения образца. Для наилучшего удовлетворения всех требований к условиям формирования ОК было разработано и изготовлено специальное устройство, схематически представленное на **рис. 1**. Устройство обеспечивало подъем температуры образцов со скорос-

Технология и конструирование в электронной аппаратуре, 2000, № 5-6

ТЕХНОЛОГИЯ ПРОИЗВОДСТВА

тью $50-60^{\circ}$ С/с, почти с такой же скоростью образцы охлаждались. Для достижения быстрого нагрева и охлаждения пластин использовались манипуляторы, управление которыми осуществлялось за пределами зоны нагрева. Поскольку это приводило к разгерметизации рабочего объема, для предотвращения натекания воздуха в зону нагрева в рабочем объеме создавалось небольшое избыточное давление водорода (*P*~1,15–1,20 атм). (Это гарантировало также безопасные условия работы.) Загрузка и выгрузка пластин осуществлялись после достаточной продувки рабочего объема сухим азотом.

Для лучшего выравнивания температуры в зоне нагрева по бокам зоны формировались так называемые подпорные зоны, в которых температура была на $30-50^{\circ}$ С ниже температуры рабочей зоны.

После прогрева пластина выгружалась тыльной стороной на металлический столик из меди массой не менее 100 г с зеркальной поверхностью для обеспечения хорошего теплового контакта. Температура металлического столика составляла ~50 – 60°С, что давало возможность охлаждать пластину со скоростью 30 – 40°С/с. При этом отбор тепла от расплавленной области на границе раздела "металл – полупроводник" осуществлялся, в основном, через подложку. Это создавало условия для равномерной кристаллизации и улучшения морфологии ОК [10].

Типичный температурный режим вплавления ОК с помощью описанного устройства представлен на **рис. 2**. Как и ожидалось, на металлическом столике пластина охлаждается быстрее.

Рис. 2. Температурный режим вплавления омических контактов для пластин диаметром 40 мм:

 1 — охлаждение на металлическом столике; 2 — охлаждение в потоке водорода

Исследование образцов

На **рис. 3** представлены температурные зависимости удельного контактного сопротивления (ρ_c) ОК с двумя типами металлизации при времени вплавления 30 с (пластины диаметром 40 мм).

Для ОК с металлизацией AuGe — Ni — Au наименьшее значение ρ_c , равное 3,3·10⁻⁶ Ом·см², достигается при температуре вплавления 435°С, а для металлизации AuGe — Au наименьшее значение ρ_c , равное 6,0·10⁻⁶ Ом·см², получено при температуре 425°С. Некоторый сдвиг оптимальной температуры вплавления в сторону увеличения для ОК, в металлиза-

ции которых присутствует никель, объясняется именно ролью этого металла в формировании контактов [1, 3].

В процессе оптимизации режимов термообработки было также установлено, что оптимальные время и температура вплавления ОК зависят от массы пластины, на что авторы целого ряда работ [1, 2, 11] до настоящего времени не обращали внимания. Обычно в производстве СВЧ ПТШ и других полупроводниковых приборов используются пластины диаметром 40, 50, 60 или 76 мм. Средняя масса таких пластин составляет соответственно 2,60-2,75, 5,40-5,60 и 8,50-9,00 г (режимы формирования ОК на пластинах диаметром 76 мм в данной работе не исследовались). Поэтому закономерно, что из-за инерционности прогрева полупроводника на пластинах разных размеров необходимы разные режимы термообработки для достижения минимальных значений ρ.

На **рис.** 4 представлены зависимости ρ_c от времени термообработки при температуре 435°С для ОК, сформированных на пластинах разного диаметра. В этих экспериментах использовалась только металлизация AuGe—Ni—Au. Исследования показывают, что оптимальное время термообработки, определенное по минимуму ρ_c , для пластин Ø40 мм составляет 30 с, для пластин Ø50 мм — 45 с и для пластин Ø60 мм — 60 с. Эти режимы были рекомендованы для формирования ОК в полупроводниковых приборах (ПТШ и МИС) при изготовлении их на пластинах разного размера.

ТЕХНОЛОГИЯ ПРОИЗВОДСТВА

Таким образом, описанное устройство для термообработки полупроводниковых пластин обеспечивает быстрый нагрев и охлаждение образцов в восстановительной среде (водороде), что создает необходимые условия для равномерной рекристаллизации и улучшения морфологии ОК в процессе вплавления металлизации. Учет зависимости режимов термообработки от массы пластины при изготовлении СВЧ полупроводниковых приборов (ПТШ, диодов, МИС) позволяет оптимизировать технологические процессы формирования ОК.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Piotrowska A., Guivac'h A., Pelous G. Ohmic contacts to III-V compound semiconductors: A review of fabrication techniques // Solid-St. Electron. - 1983. - Vol. 26, N 3. - P. 179-197.

2. Каганович Э. Б., Свешников С. В. Получение омических контактов к полупроводниковым соединениям A_3B_5 (обзор) // Оптоэлектроника и полупроводниковая техника. — 1992. — Вып. 22. — С. 1—16.

3. Robinzon G. Y. Metallurgical and electrical characterization of metal-semiconductor contacts // Thin Solid Films. - 1980. - Vol. 72, N 1. - P. 129-141.

4. Braslau M. Alloyed ohmic contacts to GaAs // J. Vac. Sci. Technol. – 1981. – Vol. 19, N 3. – P. 803–807. 5. Брянцева Т. А., Лакашин В. В., Любченко В. Е. Особенности коалесценции тонких пленок Аu – Ge при формировании контактов ограниченных размеров // Физика твердого тела. — 1988. — Т. 30, вып. 3. — С. 645 — 648.

6. Воложенинов И. О., Иващук А. В. Оптимальные режимы термообработки омических контактов к *n*-GaAs // Электронная техника. Сер. Полупроводниковые приборы. — 1981. — Вып.5. — С. 74—75.

7. Іващук А. В. Формування омічних контактів з одночасним очищенням поверхні арсеніду галію і її легуванням атомами германію // Наукові вісті. — 2000. — Вип. 2. — С. 5—8.

8. Патент 16522 Украины от 29.08.97. Спосіб виготовлення структур польових транзисторів з бар'єром Шотткі // В. І. Босий, А. В. Іващук, В. П. Кохан та ін.

9. Патент 16341 Украины от 29.08.97. Випарник для напилення речовини в вакуумі // А. В. Іващук, В. Г. Корнус, В. П. Кохан, В. М. Яшник.

10. А. с. 299219 Украины от 1.08.1989. Способ изготовления омического контакта к полупроводниковому соединению А₃B₅ с проводимостью *n*-типа // В. И. Босый, А. В. Иващук, В. П. Кохан, М. А. Стовповой.

11. Курин В. В., Кравченко Л. Н., Уралов А. А. и др. Свойства омических контактов к арсениду галлия на основе систем Au-Ge-Ni // Электронная промышленность. — 1990. — № 3. — С. 30—32.

К. т. н. В. Н. КРЫЛОВ, к. т. н. С. Г. АНТОЩУК, к. т. н. Г. Ю. ЩЕРБАКОВА

Украина, Одесский политехнический университет

По материалам доклада на МНПК «Современные информационные и электронные технологии» («СИЭТ-2000»). – 23–26 мая 2000 г., Одесса

ОБРАБОТКА ДАННЫХ ПРИ АВТОМАТИЗАЦИИ ДЕФЕКТОСКОПИЧЕСКОГО КОНТРОЛЯ МАТЕРИАЛОВ ЭЛЕКТРОННОЙ ТЕХНИКИ

Решаются задачи распознавания текстур и объектов на фоне текстуры при контроле материалов и поверхностей изделий электронной техники.

С ростом степени интеграции и функциональной сложности микросхем становятся жестче требования к контролю состояния материалов электронной техники. Создание современных БИС и СБИС, линий задержки, фильтров требует использования надежных средств контроля качества материалов и поверхностей исходных пластин в процессе их технологической обработки. Вместе с тем традиционно используемые в производстве способы контроля основываются на трудоемких и субъективных визуальных методах. Таким образом, остается актуальной задача автоматизации визуального дефектоскопического контроля материалов с текстурированной поверхностью путем применения компьютерных систем обработки и анализа изображений.

Необходимость в автоматизации визуального дефектоскопического контроля материалов с текстурированной поверхностью возникает также в исследовательских работах, например, при замене применяемых в составе резистивных паст благородных металлов и их соединений новыми, более дешевыми материалами [1] (рис. 1), при обнаружении дефектов (дислокаций несоответствия) [2] (рис. 2), при анализе форм проявления эффектов рассеяния в процессе формирования масок [3] (рис. 3) и т. д.

Приведенные изображения пленок и материалов относятся к текстурным, т. е. имеют, в основном, повторяющуюся структуру. Изображения дефектов (пор) на изображениях образцов твердого раствора BaB₆-LaB₆ (рис. 1, п — поры), дислокаций несоответствия на границе раздела (100)CdTe/(100)GaAs (рис. 2), формы проявления эффектов рассеяния во внутренней части регу-