МАТЕРИАЛЫ ЭЛЕКТРОНИКИ

К. ф.-м. н. М. В. ДМИТРИЕВ

Украина, г. Одесса, Науч.-исследов. технологический ин-т «Темп»

Дата поступления в редакцию 27.12 1999 г. Оппонент к. ф.-м. н. М. А. ГЛАУБЕРМАН

ВЛИЯНИЕ ТЕРМОЗАВИСИМЫХ ПРЕВРАЩЕНИЙ В СТЕКЛЕ КОМПОЗИЦИОННОЙ СТЕКЛОКЕРАМИКИ НА ЕЕ ДИЭЛЕКТРИЧЕСКУЮ ПРОНИЦАЕМОСТЬ

Дана оценка раздельного влияния химических и структурных изменений кристаллизуемого стекла в композиционной стеклокерамике на диэлектрическую проницаемость.

Уровень современной электроники характеризуется использованием новых прогрессивных и экономичных материалов и технологий. Применяемые материалы отличаются жесткими требованиями к широкому спектру физических и эксплуатационных характеристик. Реализация таких характеристик в простых однородных материалах часто не удается. Поэтому актуальным становится создание композитных материалов с нужными свойствами. Примером такого материала является стеклокерамический композиционный материал (СКМ), применяемый вместо изолирующей керамики [1, 2], целесообразность использования которого обусловлена не только существенным экономическим выигрышем, но и открывающейся возможностью ощутимого влияния на величину характеристик СКМ с помощью многих приемов. Одним из них является выбор температуры и длительности спекания материала.

В работе [3] показано, что путем варьирования температуры и длительности спекания можно добиться значительного изменения диэлектрической проницаемости СКМ на основе кристалли-

зуемого стекла и керамического наполнителя. Причинами такого изменения является не только появление в стекле кристаллизуемой фазы с отличающимися свойствами, но и химические и структурные превращения, происходящие даже в отдельно взятых некристаллизуемых стеклах при высокой температуре [4, с. 7]. Однако в [3] не дана оценка раздельного влияния каждого из этих процессов на величину изменения диэлектри-

ческой проницаемости СКМ и его стекла. Вместе с тем такая оценка полезна для расширения представлений о температурных процессах в стекле СКМ, а также может быть использована при разработке подобных материалов.

Информация о влиянии температурных процессов на свойства СКМ является особенно важной при изготовлении крупных изделий. Это связано с тем, что с увеличением размеров деталей время спекания необходимо увеличивать для обеспечения равномерной усадки, выдержки геометрии и исключения внутренних напряжений. Увеличение времени спекания приводит к более ощутимому проявлению температурных процессов в величине параметров СКМ и его стекла.

Настоящая работа является продолжением [3]. Ее задача состоит в нахождении способа оценки раздельного влияния изменений химического состава и структуры стеклянного компонента спекаемого материала на величину диэлектрической проницаемости СКМ и остаточного стекла.

Результаты эксперимента. В работе [3] исследовался модельный СКМ с двумя исходными компонентами. В качестве наполнителя использовался глинозем ГН-1 (95% кристаллического оксида алюминия α-формы). Вторым компонентом было свинцовоборосиликатное стекло. Образцы СКМ спекались в течение 0,5-3,5 ч при максимальной температуре 900 и 950°С. С помощью рентгенофазового анализа в спеченном СКМ была выявлена новая кристаллическая фаза — кристобалит. Результаты экспериментов и расчетов долей и диэлектрической проницаемости компонентов, полученные в работе [3], приведены в **табл. 1** в качестве исходных данных для выполнения расчетов и для сопоставления с ними получаемых результатов.

Таблица 1

Диэл	ектрическ	сая пр	оницаемосп	пь СК	M u o o	статоч	ного
текла,	объемные	доли и	кристобали	uma u	ocmam	очного	стекла

<i>t</i>		$t^{\circ}_{c\pi} =$	950°C		$t^{\circ}_{cn}=900^{\circ}C$					
<i>і</i> , ч	E ₃₉	Eoc	Уф	y _{oc}	E ₃₉	€ _{oc}	y_{Φ}	y _{oc}		
0,5	7,92	5,872	0,047	0,458	7,90	5,778	0,026	0,479		
1,0	8,30	6,717	0,086	0,419	7,90	5,845	0,049	0,456		
2,0	8,21	6,909	0,142	0,363	7,77	5,747	0,089	0,416		
3,5	7,90	6,528	0,193	0,312	7,54	5,445	0,134	0,371		

Из табл. 1 видно, что изменение времени t и температуры спекания t°_{cn} приводит к ощутимым изменениям экспериментально измеренной величины диэлектрической проницаемости СКМ ε_{39} и рассчитанной величины диэлектрической проницаемости остаточного стекла ε_{oc} . Изменяются также объемные доли кристобалита y_{db} и остаточного стекла y_{oc} .

МАТЕРИАЛЫ ЭЛЕКТРОНИКИ

)

Результаты расчетов. При выполнении расчетов был использован предложенный Лихтенеккером и Ротером логарифмический закон смешивания двух компонентов материала [5]. Сущность его состоит в том, что логарифм параметра композиционного материала равен сумме произведений объемной доли на логарифм параметра компонента для обоих составляющих. Справедливость этого закона для многокомпонентного СКМ установлена в [6]. Применив закон к рассматриваемому СКМ, получим следующее выражение:

$$\ln \varepsilon_{3xc} = y_{H_3} \ln \varepsilon_H + y_{oc} \ln (\varepsilon_c + \Delta \varepsilon_x + \Delta \varepsilon_c) + y_{\phi} \ln \varepsilon_{\phi}, \qquad (1)$$

- где ϵ_{3xc} диэлектрическая проницаемость трехкомпонентного СКМ (наполнитель, стекло, новая фаза) с учетом влияния на ее величину изменения химического состава стекла и структурных превращений в нем при спекании материала;
- $y_{\rm H3}, y_{\rm oc}, y_{\rm \varphi}$ объемные доли наполнителя, остаточного стекла и кристаллизуемой фазы, соответственно;
 - ${f \epsilon}_{_{\rm H}}, {f \epsilon}_{_{\rm C}}, {f \epsilon}_{_{\rm D}}$ диэлектрическая проницаемость наполнителя, исходного стекла и кристаллизуемой фазы, соответственно;
 - $\Delta \epsilon_{\rm x}, \Delta \epsilon_{\rm c}$ изменения диэлектрической проницаемости исходного стекла из-за изменения химического состава и из-за стуктурных превращений, соответственно,

причем

$$\varepsilon_{c} + \Delta \varepsilon_{x} + \Delta \varepsilon_{c} = \varepsilon_{oc}, \qquad (2)$$

где $\boldsymbol{\epsilon}_{_{oc}}-$ диэлектрическая проницаемость остаточного стекла.

Величины диэлектрической проницаемости компонентов: $\varepsilon_{\rm H}$ =11 [7], $\varepsilon_{\rm dp}$ =4,6 для кристобалита [8, с. 49], $\varepsilon_{\rm c}$ =5,872 при $t^{\circ}_{\rm cn}$ =950°С и $\varepsilon_{\rm c}$ =5,778 при $t^{\circ}_{\rm cn}$ =900°С [3]. Объемная доля керамического наполнителя $y_{\rm H3}$ для всех образцов СКМ одинакова и равна 0,495 [3].

Величина $y_{\rm H3} \ln \varepsilon_{\rm H}$ в формуле (1) не зависит от температуры и длительности спекания. В исследуемом СКМ наполнитель не участвует в образовании кристаллизуемой фазы и не изменяет своих свойств при разных режимах спекания из-за его тугоплавкости (температура плавления кристаллического α -Al₂O₃ составляет 2050°C [9, с. 99]).

Структурные и химические превращения в кристаллизуемом стекле СКМ при его спекании отличаются от таковых в некристаллизуемом стекле не только формированием кристаллической фазы. Процесс упорядочивания структуры стекла при повышенной температуре за счет химических и геометрических изменений, характерный для обычных некристаллизуемых стекол [4, с. 7], в СКМ сопровождается следующими дополнительными процессами:

 происходит гораздо более весомое изменение химического состава стекла за счет расходования компонента стекла на образование кристаллической фазы (в исследуемой стеклокерамике — части окислов SiO₂ на формирование кристобалита);

 происходит процесс разупорядочивания структуры стекла за счет геометрических преобразований, вызванных диффузией окислов SiO₂ для коагуляции в отдельно расположенные в остаточном стекле кристаллики кристобалита, потеснением последними соприкасаемых участков остаточного стекла, формированием новой геометрии остаточного стекла из-за расходования части окислов SiO₂ на кристобалит, и другими причинами.

Анализ приведенных в табл. 1 зависимостей диэлектрической проницаемости СКМ $\epsilon_{3 \scriptscriptstyle 3}$ и остаточного стекла $\boldsymbol{\epsilon}_{_{OC}}$ от времени спекания позволяет предположить, что процесс упорядочивания структуры приводит к уменьшению $\epsilon_{_{3\!9}}$ и $\epsilon_{_{0c}},$ а процесс разупорядочивания — к их увеличению. Оба процесса протекают одновременно, причем при t°_{cn} =950°С процесс разупорядочивания структуры выше, чем при t_{cn}° =900°С. Это следует из табл. 1 и обусловлено тем, что при 950°С доля кристобалита y_{ϕ} более высокая. Кроме того, при малом времени спекания воздействие на величину $\boldsymbol{\epsilon}_{oc}$ процесса разупорядочивания преобладает над воздействием процесса упорядочивания структуры стекла. При возрастании времени спекания воздействие на величину $\boldsymbol{\epsilon}_{oc}$ процесса упорядочивания структуры начинает преобладать, поскольку процесс разупорядочивания подавляется из-за стремления к насыщению величины y_{ϕ} (табл. 1). Это отражается в форме зависимостей $\epsilon_{3a}(t)$ и $\epsilon_{0c}(t)$: подъем до максимума с последующим спадом при больших значениях t.

Таким образом, приведенные в формулах (1) и (2) изменения диэлектрической проницаемости остаточного стекла $\Delta \varepsilon_c$ и $\Delta \varepsilon_x$ соответствуют изменению структуры остаточного стекла из-за совместно происходящих процессов упорядочивания и разупорядочивания при спекании СКМ и процессу изменения химического состава стекла из-за расходования части окислов на кристобалит.

Величины параметров $\Delta \epsilon_{\rm x}$ и $\Delta \epsilon_{\rm c}$ неизвестны и подлежат определению.

Для нахождения величины $\Delta \varepsilon_x$ следует иметь в виду, что уменьшение окислов SiO₂ в исходном стекле из-за их расходования на кристобалит приводит к относительному повышению в остаточном стекле доли окисла PbO. С ростом доли PbO диэлектрическая проницаемость стекол повышается, причем особенно резко, когда содержание оксида свинца превышает 10% мас. [10] (в исследуемом СКМ содержание PbO в исходном стекле составляет 19% мас. [3]). Поэтому с ростом объемной доли кристобалита y_{ϕ} диэлектрическая проницаемость исходного стекла ε_c увеличивается на величину $\Delta \varepsilon_x$. Это дает основание предположить, что связь между величинами $\Delta \varepsilon_x$ и y_{ϕ} можно выразить формулой

$$\Delta \varepsilon_{\rm x} = C y_{\rm \phi}, \tag{3}$$

где *С* — постоянный множитель при данной температуре спекания.

Поскольку величина *C* неизвестна, сначала определим значения $\Delta \varepsilon_x$ при разных *C* по формуле (3). Затем определим величины диэлектрической проницаемости СКМ ε_{3x} для разных *t*, когда $\Delta \varepsilon_c = 0$ и изменение диэлектрической проницаемости исходного стекла ε_c происходит только за счет изменения $\Delta \varepsilon_x$. Для этого найденные значения Cy_{ϕ} при разных коэффициентах *C* подставим в формулу:

МАТЕРИАЛЫ ЭЛЕКТРОНИКИ

(4)

$$\ln \varepsilon_{3x} = y_{H3} \ln \varepsilon_{H} + y_{oc} \ln (\varepsilon_{c} + Cy_{\phi}) + y_{\phi} \ln \varepsilon_{\phi}.$$

Результаты расчета величины ε_{3x} с помощью формулы (4) приведены в **табл. 2** для диапазона *C*=2...6, разных значений длительности и двух значений температу-Таблица 2

Диэлектрическая проницаемость СКМ ε_{3x} при отсутствии структурных превращений в стекле

<i>t</i> ° _{сп} , °С	<i>t</i> , ч	C=2	<i>C</i> =3	<i>C</i> =4	C=5	С=6
	0,5	7,98	8,01	8,04	8,06	8,09
050	1,0	7,94	7,99	8,04	8,08	8,13
930	2,0	7,87	7,94	8,00	8,07	8,13
	3,5	7,80	7,87	7,94	8,02	8,09
	0,5	7,93	7,95	7,97	7,99	8,00
000	1,0	7,92	7,95	7,98	8,01	8,04
900	2,0	7,89	7,94	7,98	8,03	8,08
	3,5	7,84	7,90	7,97	8,03	8,09

ры спекания. Из табл. 2 видно, что влияние на величину диэлектрической проницаемости СКМ только изменения химического состава стекла практически отсутствует. Отличие ε_{3x} для разных t при одном и том же коэффициенте С не превышает 1-2% при С=2 и существенно ниже при С>2. Это можно объяснить анализируя величину изменений параметров в формуле (4) при изменении длительности спекания. Суммарная величина второго и третьего слагаемых в (4) мало изменяется изза того, что росту y_{ϕ} соответствует уменьшение y_{oc} (y_{oc} = $=y_{c_3}-y_{\phi}$, где y_{c_3} – объемная доля закристаллизованного стекла), а также из-за того, что диэлектрическая проницаемость стекла и кристобалита не очень сильно отличаются друг от друга. Кроме того, поскольку $\varepsilon_{H} >> \varepsilon_{c}$, $\epsilon_{\rm H} >> \epsilon_{\rm p}$ и $y_{\rm H3} \approx y_{\rm oc} + y_{\rm p}$, первое слагаемое в (4) существенно больше остальных по величине, что приводит к сглаживанию в процентном отношении суммарных изменений второго и третьего слагаемых.

Из изложенного следует, что наблюдаемая форма зависимости от времени спекания диэлектрической проницаемости СКМ ε_{39} определяется практически только изменением диэлектрической проницаемости остаточного стекла $\Delta \varepsilon_c$ из-за структурных превращений в нем, а также — формой зависимости $\Delta \varepsilon_c(t)$.

Согласно формулам (2) и (3) величину $\Delta \varepsilon_{c}$ можно представить в виде

$$\Delta \varepsilon_{\rm c} = \varepsilon_{\rm oc} - \varepsilon_{\rm c} - C y_{\rm \phi}. \tag{5}$$

Результаты расчета величины $\Delta \varepsilon_x$ по формуле (3) и величины $\Delta \varepsilon_c$ по формуле (5) для разных значений коэффициента *C* и разных режимов спекания приведены в **табл. 3**. Знак «минус» при $\Delta \varepsilon_c$ соот-

ветствует уменьшению диэлектрической проницаемости стекла из-за суммарных структурных превращений в нем.

Определим, при каких значениях *C* наблюдается соответствие форм зависимостей $\Delta \varepsilon_c$ и ε_{39} от длительности спекания. При этом следует учитывать не количественное, а качественное соответствие, поскольку имеет место сглаживающее влияние наполнителя на форму зависимости $\varepsilon_{39}(t)$.

Для температуры спекания 950°С в зависимости ε_{3_9} от t характерными являются точки, в которых величина ε_{3_9} максимальна (t=1 ч) и в которых величины ε_{3_9} близки (t=0,5 ч и t=3,5 ч, табл. 1). Больше всего такой форме соответствует зависимость $\Delta \varepsilon_c(t)$ при C=5 (табл. 3).

Для температуры спекания 900°С в зависимости ε_{33} от *t* характерными являются точки при *t*=0,5 ч и *t*=1 ч, в которых величина ε_{33} одинакова, а также при *t*=3,5 ч, когда ε_{33} принимает минимальное значение (табл. 1). Больше всего такой форме соответствует зависимость $\Delta \varepsilon_c(t)$ при *C*=3 (табл. 3).

Найденные таким способом значения коэффициента *C* дают искомые сведения о раздельном влиянии двух одновременно происходящих процессов в стекле спекаемой стеклокерамики на величину диэлектрической проницаемости остаточного стекла ε_{oc} при разных режимах спекания. В табл. З влияние на величину ε_{oc} процесса изменения химического состава стекла отражено величинами $\Delta \varepsilon_x$, а процесса структурных изменений в стекле — величинами $\Delta \varepsilon_{cn}$ при значениях *C*=5 для t°_{cn} =950°C и *C*=3 при t°_{cn} =900°C.

Оцененные величины $\Delta \varepsilon_{c}$ позволяют рассчитать значения диэлектрической проницаемости исследуемого СКМ ε_{3c} , соответствующие только изменению $\Delta \varepsilon_{c}$ за счет структурных превращений в стекле, когда $\Delta \varepsilon_{x}=0$. Цель такого расчета состоит в проверке форм зависимостей $\varepsilon_{3c}(t)$ и $\Delta \varepsilon_{c}(t)$ на их соответствие и в оценке наблюдаемых расхождений между ними. Для этого воспользуемся формулой

$$\ln\varepsilon_{3c} = y_{\mu3} \ln\varepsilon_{\mu} + y_{0c} \ln(\varepsilon_{c} + \Delta\varepsilon_{c}) + y_{dc} \ln\varepsilon_{dc}$$
(6)

и приведенными выше исходными данными и величинами в табл. 3. Результаты такого расчета показаны на **рисунке**.

Из рисунка видно, что форма зависимостей $\varepsilon_{3c}(t)$ качественно соответствует форме зависимостей $\Delta \varepsilon_{c}(t)$ (табл. 3). Кроме того, диэлектрическая проницаемость ε_{3c} близка по величине значениям диэлектрической проницаемости СКМ ε_{39} (табл. 1). Об этом свидетельствуют

Таблица З

Изменения диэлектрической проницаемости остаточного стекла из-за изменения химического состава и структурных превращений

	<i>t</i> ° _{сп} =950°С						$t^{\circ}_{cn} = 900^{\circ}C$					
<i>t</i> , ч	<i>C</i> =4		<i>C</i> =5		<i>C</i> =6		C=2		C=3		<i>C</i> =4	
	$\Delta \epsilon_{\rm x}$	$\Delta \epsilon_{\rm c}$	$\Delta \epsilon_{\rm x}$	$\Delta \epsilon_{c}$	$\Delta \epsilon_{\rm x}$	$\Delta \epsilon_{\rm c}$	$\Delta \epsilon_{\rm x}$	$\Delta \epsilon_{\rm c}$	$\Delta \epsilon_{\rm x}$	$\Delta \epsilon_{c}$	$\Delta \epsilon_{\rm x}$	$\Delta \epsilon_{\rm c}$
0,5	0,188	-0,188	0,235	-0,235	0,282	-0,282	0,052	-0,052	0,078	-0,078	0,104	-0,104
1,0	0,344	0,501	0,430	0,415	0,516	0,329	0,098	-0,031	0,147	-0,080	0,196	-0,129
2,0	0,568	0,469	0,710	0,327	0,852	0,185	0,178	-0,209	0,267	-0,298	0,356	-0,387
3,5	0,772	-0,116	0,965	-0,309	1,158	-0,502	0,265	-0,601	0,402	-0,735	0,536	-0,869

Технология и конструирование в электронной аппаратуре, 2000, № 4

Зависимость диэлектрической проницаемости СКМ $\varepsilon_{3c}(t)$ и отношения $\varepsilon_{3c}/\varepsilon_{3a}(2)$ от длительности спекания: a – при $t_{cn}^*=950^\circ$ C; δ – при $t_{cn}^*=900^\circ$ C

также зависимости отношения этих величин $\varepsilon_{3c}/\epsilon_{39}$ от времени спекания. Отличие этого отношения от единицы составляет малую величину вследствие слабого влияния изменения химического состава стекла на величину ди-электрической проницаемости СКМ.

Обсуждение результатов. Расчеты, выполненные на основе сделанных предположений, дают оценочную информацию о температурных процессах в кристаллизуемом стекле рассматриваемого СКМ в рамках исследованных температур и длительности спекания. Хотя величины изменений диэлектрической проницаемости стекла ε_c из-за двух разных механизмов влияния на ε_c и сопоставимы по величине, эти изменения, однако, по-разному влияют на диэлектрическую проницаемость СКМ ϵ_{3a} . Изменение диэлектрической проницаемости стекла из-за изменения его химического состава практически не влияет на величину $\epsilon_{_{39}}$. Величина $\epsilon_{_{39}}$ определяется главным образом структурными изменениями остаточного стекла, а также формой их зависимости от времени спекания.

В пользу сделанных выше предположений говорят следующие факты:

— максимум зависимости $\varepsilon_{oc}(t)$ при t°_{cn} =950°С сдвинут по оси t вправо по сравнению с максимумом этой зависимости при t°_{cn} =900°С (табл. 1). Это объясняется различным соотношением изменения структуры стекла за счет разупорядочивания и за счет ее упорядочивания при этих температурах;

— этой же причиной объясняется бо́льшая величина коэффициента C при t°_{cn} =950°C, чем при t°_{cn} =900°C;

— диэлектрическая проницаемость СКМ ε_{3_3} при двух исследованных температурах спекания имеет близкие по величине значения при t=0,5 ч, поскольку малы объемные доли кристобалита y_{ϕ} , являющегося первопричиной появления изменений в стекле, причем при длительности спекания t<0,5 ч процесс разупорядочивания структуры стекла развивается слабо;

— наибольшее отклонение $\varepsilon_{3c}/\varepsilon_{39}$ от единицы имеет место при t=3,5 ч, когда изменение диэлектрической проницаемости стекла из-за изменения его химического состава принимает максимальное значение (табл. 3) и это не учитывается в величине ε_{3c} .

Таким образом, найден несложный способ оценки раздельного влияния на диэлектрическую проницаемость СКМ и его стекла процессов изменения химического состава и структуры остаточного стекла при спекании материала. Этот способ может быть использован при разработке новых материалов, подобных рассмотренному СКМ.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Лаймен Д. Главная тема конференции по электронным компонентам // Электроника. — 1983. — Т. 56, № 1. — С. 72—74.

2. Дмитриев М. В. Композиционная радиостеклокерамика // Тр. Одесск. политехн. ун-та. — 1999. — Вып. 2. — С. 209 — 211.

3. Дмитриев М. В. Влияние режимов спекания на параметры стеклокерамики с кристаллизуемым стеклом // Технология и конструирование в электронной аппаратуре. — 2000. — № 1. — С. 36—39.

4. Структурные превращения в стеклах при повышенных температурах / Под ред. Н. А. Торопова, Е. А. Порай-Кошица. — Л. : Наука, 1965.

5. Lichtenecker K., Rother K. Die herleitung des logarithmichen mischungsgesetzes des allgemeinen prinzipien der stationaren strömung // Physikaliche Zeitschrift. – 1931. - Bd. 32, N e. - S. 255-260.

6. Дмитриев М. В. Стеклокерамика с продуктом взаимодействия стекла и наполнителя: диэлектрическая проницаемость // Технология и конструирование в электронной аппаратуре. — 1999. — № 4. — С. 44—46.

7. Дмитриев М. В. Влияние концентрации компонентов и пор на диэлектрическую проницаемость стеклокерамики // Там же. – 1997. – № 4. – С. 34–38.

8. Природный кварц и его физико-химические свойства. — М. : Недра, 1985.

9. Балкевич В. Л. Техническая керамика. – М. : Стройиздат, 1984.

10. Пат. 151345 Японии. Состав стекла с низкой диэлектрической проницаемостью / Тиба Дзиро. — 1983.