PACS: 74.25.Nf, 74.20.De, 74.50.+r, 74.81.-g

Л.В. Белевцов

ПОВЕРХНОСТНЫЙ ИМПЕДАНС В ГРАНУЛИРОВАННЫХ СВЕРХПРОВОДНИКАХ ВТОРОГО РОДА В СМЕШАННОМ СОСТОЯНИИ

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

Статья поступила в редакцию 24 апреля 2008 года

Исследовано совместное влияние границ гранул и вихрей Абрикосова на поведение поверхностного импеданса Z_s сверхпроводника второго рода. Рассмотрение проведено на основе двужидкостной модели и вихрь-слоистой модели для внутригранульного транспортного тока в гранулах и модели межгранульных джозефсоновских переходов. Анализируется предел малой плотности вихрей Абрикосова, когда их взаимодействием можно пренебречь. Результаты указывают на то, что в отличие от безвихревой модели Маватари [1] поверхностное сопротивление R_s монотонно зависит от плотности критического тока J_{cj} в межгранульных границах и размера гранул а. Наличие абрикосовских вихрей ведет к усилению микроволновой диссипации в переходах с ростом J_{cj} и а.

Введение

Высокотемпературные сверхпроводники состоят из большого количества гранульных границ, на которых локально понижается параметр порядка вследствие короткой длины когерентности [2]. Гранульные границы представляют большой интерес как в фундаментальной физике, так и в прикладной сверхпроводимости [3–5] и играют существенную роль в микроволновом отклике и поверхностном сопротивлении *R*_s высокотемпературных пленок [6–14].

Электродинамика межгранульных границ может быть описана с использованием модели джозефсоновских переходов и одного из наиболее важных параметров, характеризующих переход, – плотности критического тока J_{cj} для джозефсоновских туннельных токов через гранульную границу [15–17]. Величина J_{cj} сильно зависит от угла разориентации гранульных границ [18,19]. В пленках YBa₂Cu₃O_{7- δ} в результате допирования Са величина J_{cj} может возрасти [20], а R_s – уменьшиться [14]. Исследование отношения между R_s и J_{cj} в допированных Са сверхпроводящих пленках YBa₂Cu₃O_{7- δ}. Тем не менее в настоящее время зависимость J_{cj} от R_s

не является тривиальной и недостаточно ясна, а именно не ясно, каким образом гранульные границы усиливают микроволновую диссипацию, величина которой пропорциональна R_s . Роль межгранульных границ в микроволновой диссипации рассмотрена в работе Маватари [1] в области полей $B < B_{c1}$ в отсутствие вихрей Абрикосова. В то же время известно, что изменение положения вихревой нити в грануле меняет свойства системы вследствие взаимодействия нити с межгранульными границами [21,22].

В настоящей работе теоретически исследована совместная роль межгранульных границ и вихрей Абрикосова в поверхностном импедансе в смешанном состоянии в свехпроводниках с ламинарной структурой границ. Выражения для поверхностного импеданса $Z_s = R_s - iX_s$ записаны как функция от J_{cj} плотности тока в контакте. Каждая вихревая нить взаимодействует с вихрямиизображениями через поверхность и межгранульные переходы [21,22].

Основные уравнения

Сверхпроводник с межгранульными границами

Рассмотрим проникновение микроволнового поля (т.е. магнитной индукции $\mathbf{B} = \mu_0 \mathbf{H}$, электрического поля \mathbf{E} и плотности тока \mathbf{J}) в сверхпроводник, который занимает полубесконечную область x > 0. Линейный отклик исследуем в пределе малого микроволнового поглощения, так что временная зависимость микроволнового поля выражается гармоническим параметром $e^{-i\omega t}$, где $\omega/2\pi$ – частота микроволнового поля, которая много меньше частоты энергетической щели сверхпроводника. Магнитную индукцию \mathbf{B} будем полагать порядка нижнего критического поля \mathbf{B}_{c1} , так что в грануле находится один вихрь Абрикосова. Предлагаемое решение может быть распространено и на случай $\mathbf{B} < \mathbf{B}_{c1}$, когда при понижении поля в грануле остался запиннингованный вихрь. Микроволновый отклик в смешанном состоянии без учета границ рассматривался в работе [23].

Сверхпроводник моделируется как слоистая структура (как в работах [21,22,24]): гранульные границы параллельны плоскости *ху* и расположены при z = na, где a – пространство между гранулами (т.е. эффективный размер гранулы) и $n = 0, \pm 1, ..., \pm \infty$. Толщина барьера межгранульных границ d_j много меньше чем, размер a и лондоновская глубина проникновения λ . Поэтому мы исследуем предел малого барьера $d_j \rightarrow 0$, а именно барьеры межгранульных границ задаются как na - 0 < z < na + 0.

Двужидкостная модель для внутригранульного тока

Приспособим стандартную двужидкостную модель [1,16,17] для транспортного тока в грануле при na + 0 < z < (n + 1)a - 0. Внутригранульный ток $\mathbf{J} = \mathbf{J}_s + \mathbf{J}_n$ представляется как сумма сверхпроводящего тока $\mathbf{J}_s = i\sigma_s \mathbf{E}$ и нормального $\mathbf{J}_n = \sigma_n \mathbf{E}$, где $\sigma_s = 1/\omega\mu_0\lambda^2$, σ_n – нормальная проводимость в грануле. Для микроволнового диапазона $\omega/2\pi \sim \text{GHz}$ можно пренебречь током смещения $\mathbf{J}_d = -i\omega\varepsilon \mathbf{E}$ с диэлектрической постоянной ε . Тогда соотношение Ампера $\mu_0^{-1}\nabla \times \mathbf{B} = (\sigma_n + i\sigma_s)\mathbf{E}$ можно записать в виде

$$\mathbf{E} = -i\omega\Lambda_g^2 \nabla \times \mathbf{B} \,, \tag{1}$$

где Λ_g – внутригранульная глубина проникновения переменного поля, определяемая выражением

$$\Lambda_g^{-2} = \omega \mu_0 (\sigma_s - i\sigma_n) = \lambda^{-2} - i\omega \mu_0 \sigma_n.$$
⁽²⁾

Объединяя (1) с выражением Фарадея $\nabla \times \mathbf{E} = i\omega \mathbf{B}$, получим уравнение Лондона для магнитной индукции $\mathbf{B} = B_v(x, z, \mathbf{e})_v$ при $z \neq na$:

$$B_y - \Lambda_g^2 \nabla^2 B_y = 0.$$
(3)

Для идеальных однородных сверхпроводников без межгранульных границ уравнение (3) верно при $-\infty < z < +\infty$, решением является выражение вида $B_y(x) = \mu_0 H_0 e^{-x/\Lambda_g}$, а электрическое поле следует из (1) в виде $E_y(x) = -i\omega\mu_0\Lambda_g H_0 e^{-x/\Lambda_g}$. Поверхностный импеданс $Z_{s0} = R_{s0} - iX_{s0}$ для однородного сверхпроводника задается выражением $Z_{s0} = E_y(x = 0)/H_0 = -i\omega\mu_0\Lambda_g$. Поверхностное сопротивление $R_{s0} = \text{Re}(Z_{s0})$ и реактивность $X_{s0} = -\text{Im}(X_{s0})$ идеального однородного сверхпроводника без межгранульных границ выражаются формулами [17]:

$$R_{s0} = \mu_0^2 \omega^2 \lambda^3 \sigma_n / 2 , \qquad (4)$$

$$X_{s0} = \mu_0 \omega \lambda \tag{5}$$

для $\sigma_n/\sigma_s \ll 1$ в области температур *T* ниже температуры сверхпроводящего перехода T_c .

Модель смешанного состояния в слоистой структуре

Положению вихря отвечают координатные точки (x_0 , z_0). Будем считать a >> 1, ось вихря совпадает с осью y и параллельна поверхности образца (x = 0) и внутренним границам гранул. Вихрь добавляет свое магнитное поле, которое искажается поверхностями так, чтобы, во-первых, не создавалось добавочное поле ни на поверхности, ни в джозефсоновских контактах (поскольку поле на поверхности задано), а, во-вторых, ток, нормальный к поверхностям, обращался в нуль. Это можно осуществить, если добавить к вихрю его зеркальные изображения относительно поверхностей с противоположным направлением поля и тока [21,22]. Поле вихря Абрикосова удовлетворяет лондоновскому уравнению для магнитной индукции

$$B_{y} - \Lambda_{g}^{2} \nabla^{2} B_{y} = \mu_{0} \Phi_{0} e_{y} \left[\sum_{n=-L}^{L} \left\{ (-1)^{n} \delta(\rho - \rho_{n}^{(+)}) + (-1)^{n+1} \delta(\rho - \rho_{n}^{(-)}) \right\} \right].$$
(6)

Здесь $\Phi_0 = h/2e$ – квант магнитного потока; e_y – единичная орта вдоль оси *Y*; $\delta(\rho - \rho_n)$ – двумерная дельта-функция Дирака в *X*–*Z*-плоскости; $\rho_{\pm n}^{(+)} = \left[x_0, (-1)^n \left(z_0 - \frac{a}{2} \right) \pm na \right]$ – положение вихря (n = 0) и изображений ($n \neq 0$) в области сверхпроводящих гранул (вдоль оси *Z*), где «+*n*» и «–*n*» отвечают отсчету соответственно вправо и влево от вихря; $\rho_{\pm n}^{(-)} = \left[-x_0, (-1)^n \left(z_0 - \frac{a}{2} \right) \pm na \right]$ – положение изображений, расположенных в несверхпроводящей области (x < 0), x = 0 – граница образца.

Модель межгранульных переходов для межгранульного тока

Приспособим модель джозефсоновских слабых связей [1,15–17] для туннельного тока через межгранульные границы при z = na. Состояние переходов определяется разницей градиентно-инвариантной фазы через межгранульную границу $\varphi_j(x)$ и индуцированным напряжением через переход $V_j(x)$, что выражается соотношением

$$\int_{na-0}^{na+0} E dz = V_j = \frac{\Phi_0}{2\pi} \left(-i\omega\phi_j \right), \tag{7}$$

где Φ_0 – квант потока. Туннельный ток параллелен *z*-оси и является суммой сверхпроводящего (джозефсоновского) туннельного тока $J_{sj} = J_{cj} \sin \phi_j$ и нормального (квазичастичного) туннельного тока $J_{nj} = \gamma_{nj}V_j$. Плотность критического тока J_{cj} в межгранульном переходе является одним из наиболее важных параметров в настоящей работе и в области резистивности перехода соответствует величине $1/\gamma_{nj}$. Будем пренебрегать током смещения через переход: $J_{dj} = -i\omega C_j V_j$, где C_j – емкость межгранульного перехода.

Определим глубину проникновения поля в межгранульный джозефсоновский контакт λ_J и характеристическую плотность тока J_0 следующим образом [1]:

$$\lambda_J = \left(\Phi_0 / 4\pi\mu_0 J_{cj} \lambda \right)^{1/2}, \qquad (8)$$

$$J_0 = \Phi_0 / 4\pi\mu_0 \lambda^3.$$
 (9)

Отношение $J_{cj}/J_0 = (\lambda/\lambda_J)^2$ представляет силу связи между гранулами [25]. Для слабосвязанных границ $J_{cj}/J_0 = (\lambda/\lambda_J)^2 << 1$ (случай высокоугловых гранульных границ) электродинамика переходов может быть хорошо описана слабосвязанной моделью [15–17]. Для сильносвязанных границ, когда $J_{cj}/J_0 = (\lambda/\lambda_J)^2 \ge 1$ (низкоугловые границы), модель джозефсоновских контактов также является верной, однако необходимы соответствующие граничные условия, как, например, соотношение (4) в работе [25].

В пределе малой энергии микроволнового поля, так, что $\sin \phi_j \approx \phi_j = 2\pi V_i / (-i\omega \Phi_0)$ для $|\phi_j| \ll 1$, вид параметра J_{cj} упрощается:

$$J_{cj} \approx J_{cj} \varphi_j = i \gamma_{sj} V_j \,, \tag{10}$$

где $\gamma_{sj} = 2\pi J_{cj} / \omega \Phi_0 = 1 / 2\omega \mu_0 \lambda \lambda_J^2$. Суммарный туннельный ток через меж-гранульную границу принимает вид

$$\left. -\frac{1}{\mu_0} \frac{\partial B_y}{\partial x} \right|_{z=na} = J_{sj} + J_{nj} = (i\gamma_{sj} + \gamma_{nj})V_j.$$
(11)

Интегрируя соотношение Фарадея $\partial E_z / \partial x - \partial E_x / \partial z = i \omega B_y$, получаем

$$E_x(x, z = na + 0) - E_x(x, z = na - 0) =$$

$$= \int_{na-0}^{na+0} dy \left[\frac{\partial E_z(x,z)}{\partial x} + i\omega B_y(x,z) \right] = \frac{\partial V_j(x)}{\partial x}, \qquad (12)$$

где используется соотношение (7). В стационарном случае ($\omega \rightarrow 0$) выражение (12) соответствует соотношению (4) в работе [25]. Подставляя (1) и (11) в (12), получаем граничное условие для B_y при z = na:

$$\frac{\partial B_{y}}{\partial z}\Big|_{z=na+0} - \frac{\partial B_{y}}{\partial z}\Big|_{z=na-0} = \frac{a\Lambda_{j}^{2}}{\Lambda_{g}^{2}}\frac{\partial^{2}B_{y}}{\partial x^{2}}\Big|_{z=na},$$
(13)

где Λ_j^{-2} – характерная длина для проникновения переменного поля в меж-гранульный переход

$$\Lambda_j^{-2} = \omega \mu_0 a \left(\gamma_{sj} - i \gamma_{nj} \right) = \mu_0 a \left(2\pi J_{cj} / \Phi_0 - i \omega \gamma_{nj} \right).$$
(14)

Поверхностный импеданс

Соотношения (3) и (13) объединяются в одно уравнение для x > 0 и 0 < z < a:

$$B_{y} - \Lambda_{g}^{2} \nabla^{2} B_{y} - \mu_{0} \Phi_{0} \sum_{n=-L}^{L} \left[(-1)^{n} \delta(x - x_{0}) \delta\left(z - \frac{a}{2} - (-1)^{n} \left(z_{0} - \frac{a}{2}\right) - na\right) + (-1)^{n+1} \delta(x + x_{0}) \delta\left(z - \frac{a}{2} - (-1)^{n} \left(z_{0} - \frac{a}{2}\right) - na\right) \right] = a \Lambda_{j}^{2} \sum_{n=-\infty}^{+\infty} \frac{\partial^{2} B_{y}}{\partial x^{2}} \delta(z - na), (15)$$

для которого однородным решением является выражение вида [1]:

$$\frac{B_{1y}(x,z)}{\mu_0 H_0} = e^{-x/\Lambda_g} + \frac{2}{\pi} \int_0^\infty dk \frac{\cosh\left[K(z-a/2)\right]}{\left(2K\Lambda_g^2/a\Lambda_j^2\right)\sinh(Ka/2)} \times \frac{k\sin kx}{\left(2K\Lambda_g^2/a\Lambda_j^2\right) + k^2 \coth(Ka/2)}$$
(16)

для 0 < z < a, где $K = \left(k^2 + \Lambda_g^{-2}\right)^{1/2}$. Правая часть уравнения (15) и второй член правой части выражения (16) отображают граничные эффекты. Частное решение для (15) найдено в работе [22]:

$$\frac{B_{2y}}{\mu_0} = \frac{\Phi_0}{2\pi\Lambda_g^2} \sum_{n=-\infty}^{+\infty} (-1)^n K_0 \left[D_n(z, z_0, x - x_0) \right] + (-1)^{n+1} K_0 \left[D_n(z, z_0, x + x_0) \right] \right\},$$
(17)

где

$$D_n(z, z_0, x \pm x_0) = \sqrt{A^2(x \pm x_0) + B_n^2(z, z_0)};$$

$$A(x \pm x_0) = \frac{x \pm x_0}{\Lambda_g};$$

$$B_n(z, z_0) = \frac{z - a/2 - (-1)^n (z_0 - a/2) - na}{\Lambda_g}.$$

Тогда общим решением неоднородного уравнения (15) является выражение

$$B_{y}(x,z) = B_{1y}(x,z) + B_{2y}(x,z).$$
(18)

Электрическое поле в гранулах следует из (1): $E_z = i\omega \Lambda_g^2 \partial B_y / \partial x$, а индуцированное через границу напряжение следует из (11): $V_j = i\omega a \Lambda_j^2 \partial B_y / \partial x |_{z=0}$. Тогда усредненное электрическое поле \overline{E}_s на поверхности сверхпроводника можно привести к виду

$$\overline{E}_{s} = \frac{1}{a} \int_{-0}^{a-0} dz E_{z}(x=0,z) = \frac{1}{a} \left[V_{j}(x=0) + \int_{+0}^{a-0} dz E_{z}(x=0,z) \right] = = i\omega \left[\Lambda_{j}^{2} \frac{\partial B_{y}}{\partial x} \Big|_{x=z=0} + \frac{\Lambda_{g}^{2}}{a} \int_{+0}^{a-0} dz \frac{\partial B_{y}}{\partial x} \Big|_{x=0} \right].$$
(19)

Подставляя (18) в (19), получаем выражение для поверхностного импеданса $Z_s = R_s - iX_s \equiv \overline{E}_s / H_0$:

$$\frac{Z_{s}}{-i\omega\mu_{0}\Lambda_{g}} = 1 + \frac{2}{\pi} \int_{0}^{\infty} dk \frac{\Lambda_{g}^{-3}}{\left(K\Lambda_{g}^{2}/\Lambda_{j}^{2}\right) + \left(k^{2}a/2\right) \coth\left(Ka/2\right)} + \\
+ \sum_{n=-\infty}^{+\infty} \left\{ \frac{(-1)^{n+2}}{\Lambda_{g}} \left(\frac{\Lambda_{j}^{2}}{\Lambda_{g}^{2}}\right) \frac{K_{1}\left[D_{n}\left(0,z_{0},0\pm x_{0}\right)\right]}{\sqrt{A^{2}\left(0\pm x_{0}\right) + B_{n}^{2}\left(0,z_{0}\right)}} + \\
+ \frac{(-1)^{n+2}}{\Lambda_{g}} \frac{x_{0}}{a} \int_{+0}^{a-0} dz \frac{K_{1}\left[D_{n}\left(z,z_{0},0\pm x_{0}\right)\right]}{\sqrt{A^{2}\left(0\pm x_{0}\right) + B_{n}^{2}\left(z,z_{0}\right)}} \right\}.$$
(20)

Поверхностное сопротивление и реактивность определяются соответственно как $R_s = \text{Re}(Z_s)$ и $X_s = -\text{Im}(Z_s)$.

В работе [1] отмечалось, что поверхностное сопротивление $R_s = \text{Re}(\overline{E}_s / H_0) = \text{Re}(Z_s)$ распадается на два слагаемых:

$$R_s = R_{sg} + R_{cj} \,. \tag{21}$$

Внутригранульный вклад *R*_{sg} и межгранульный *R*_{sj} происходят от энергии диссипации соответственно в гранулах и на межгранульных границах.

Поверхностная реактивность $X_s = -\operatorname{Im}(\overline{E}_s / H_0) = -\operatorname{Im}(Z_s)$ также распадается на два члена:

$$X_s = X_{sg} + X_{cj}, \qquad (22)$$

где X_{sg} и X_{sj} – соответственно внутри- и межгранульная составляющие.

Кроме того, как видно из выражения (20), в полях выше B_{c1} параметры R_s и X_s распадаются еще на два слагаемых: «вихревые» R_s^v , X_s^v и «безвихревые» R_s^0 , X_s^0 :

$$R_{s} = R_{s}^{\nu} + R_{s}^{0},$$

$$X_{s} = X_{s}^{\nu} + X_{s}^{0}.$$
(23)

На рис. 1,*а* показана зависимость J_{cj} от R_s . Видно, что межгранульный вклад R_{sj} является преобладающим в области слабосвязанных границ, тогда как внутригранульный R_{sg} – в области сильной межгранульной связи J_{cj}/J_0 . Параметр R_{sj} уменьшается с ростом J_{cj} как $R_{sj} \propto J_{cj}^{-0.4}$, т.е. спад менее крутой,

Рис. 1. Зависимость поверхностного сопротивления $R_s = \text{Re}(Z_s)$ (*a*) и поверхностной реактивности $X_s = -\text{Im}(Z_s)$ (*б*) от плотности критического тока J_{cj} в межгранульных переходах при $a/\lambda = 1$ и $\Phi = 170\Phi_0$. Параметры R_s и X_s нормализованы к параметрам соответственно R_s^0 и X_s^0 без гранульных границ. На вставках показаны зависимости отношения «вихревого» параметра R_s^v из выражения (20) к «безвихревому» параметру R_s^0 (*a*) и аналогично для поверхностной реактивности X_s^v/X_s^0 (*б*) от J_{cj}/J_0

чем в аналогичной ситуации в области безвихревых полей [1]. Параметр R_{sg} убывает с ростом J_{cj} подобно $R_{sg} \propto J_{cj}^{-1.7}$. Результирующее поверхностное сопротивление $R_s = R_{sg} + R_{cj}$ монотонно зависит от J_{cj} . При этом, как показано на вставке к рис. 1, a, с ростом J_{cj} увеличивается «вихревой» вклад в сопротивление и становится преобладающим при $J_{ci} \ge 0.75 J_0$. Именно вихревым вкладом объясняется отличие наших результатов от немонотонной зависимости R_s от J_{ci} в работе [1]. Как видно из рис. 1, *б*, монотонное убывание проявляется для X_s при росте J_{cj} (т.е. в области слабой межгранульной связи $X_s \propto {J_{cj}}^{-2.8}$ и в области сильной связи $X_s \propto {J_{cg}}^{-0.7}$). Из рис. 2,*а* можно видеть монотонную зависимость R_s от размера гранулы *a* при $J_{cj} = 10^{-2} J_0$. Несмотря на то, что при росте а вклад вихрей в поверхностное сопротивление в сравнении с безвихревым членом (вставка к рис. 2,*a*) ничтожен ($\propto 10^{-3}$), он ведет к монотонной зависимости, что также отличается от немонотонной зависимости из расчетов Маватари [1]. Однако для малых размеров гранул $R_{sg} \propto a^{-0.5}$, т.е. имеем сходный результат с безвихревым случаем [1], тогда как для больших гранул $R_{s\sigma} \propto a^{-1.6}$.

На рис. 2, δ виден монотонный рост X_s с увеличением a. При этом отсутствует зависимость вихревой части реактивности X_s^v от размера зерна, т.е. изменение параметра X_s при вариации размера зерна происходит за счет внутренних характеристик самой гранулы.

Рис. 2. Зависимость поверхностного сопротивления $R_s = R_{sj} + R_{sg}$ (*a*) и поверхностной реактивности $X_s = X_{sj} + X_{sg}$ (*б*) от характерного размера гранул a/λ при $J_{cj} = 10^{-2}J_0$ и $\Phi = 170\Phi_0$. На вставках показаны аналогичные зависимости «вихревых» параметров R_s^v (*a*) и X_s^v (*б*), приведенных к «безвихревым» параметрам R_s^0 и X_s^0

По-видимому, полученные результаты можно наблюдать при измерении R_s , X_s и J_{cj} в пленках YBa₂CuO_{7- δ}, допированных Ca. Отдельно экспериментально наблюдались рост J_{cj} [20] и уменьшение R_s [14] при внедрении Ca в YBa₂CuO_{7- δ}. Однако для исследования отношения между R_s и J_{cj} необходимы одновременные измерения.

Таким образом, в работе теоретически исследовано распределение микроволнового поля в сверхпроводнике со слоистыми границами гранул в смешанном состоянии. Вычисления выполнены на основе двужидкостной модели и вихрь-слоистой модели для транспортного тока в гранулах, а также модели джозефсоновских переходов для туннельных токов через переход. Результаты указывают на то, что наличие абрикосовских вихрей ведет к усилению микроволновой диссипации на границах гранул для $J_{cj} > J_0$ и с ростом размера гранул *a*. Такая особенность ведет к монотонной зависимости R_s от J_{cj} и *a* в отличие от ситуации без вихревых нитей. С ростом J_{cj} параметр R_s уменьшается при $J_{cj} \ll J_0$ как $R_{sj} \propto J_{cj}^{-0.4}$, а при $J_{cj} \gg J_0$ – как $R_{sg} \propto J_{cj}^{-1.7}$.

Реактивность X_s определяется доминантным образом межгранульными границами. Роль абрикосовских вихрей незначительна, однако в отличие от работы [1] зависимость R_s от X_s всегда имеет монотонный характер.

Автор выражает признательность А.И. Дьяченко за обсуждение полученных результатов.

- 1. Y. Mawatari, Phys. Rev. B71, 64507 (2005).
- 2. G. Deutcher, K. Müller, Phys. Rev. Lett. 59, 1745 (1987).
- 3. J. Mannhart, H. Hilgenkamp, Physica C317-318, 383 (1999).
- 4. D. Larbalestier, A. Gurevich, D.M. Feldman, A. Polyanskii, Nature 414, 368 (2001).
- 5. H. Hilgenkamp, J. Mannhart, Rev. Mod. Phys. 74, 485 (2002).
- 6. T.L. Hylton, A. Kapitulnik, M.R. Beasley, J.P. Carini, L. Drabeck, G. Grüner, Appl. Phys. Lett. 53, 1343 (1988).
- 7. C. Attanasio, L. Maritato, R. Vaglio, Phys.Rev. B43, 6128 (1991).
- 8. J. Halbritter, J. Appl. Phys. 71, 339 (1992).
- 9. P.P. Nguen, D.E. Oates, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B48, 6400 (1993).
- 10. R. Fagertberg, J.K. Grepstad, J. Appl. Phys. 75, 7408 (1994).
- 11. M. Mahel, Solid State Commun. 97, 209 (1996).
- 12. J. McDonald, J.R. Clem, Phys. Rev. B56, 14723 (1997).
- 13. J.C. Gallop, A. Cowie, L.F. Cohen, Physica C282-287, 1577 (1997).
- 14. H. Obara, A. Sawa, H. Yamasaki, S. Kosaka, Appl. Phys. Lett. 78, 646 (2001).
- 15. А. Бароне, Дж. Патерно, Эффект Джозефсона: физика и применения, Мир, Москва (1984).
- 16. М. Тинкхам, Введение в сверхпроводимость, Мир, Москва (1980).

- 17. *T. Van Duzer, C.W. Turner*, Principles of superconductive devices and circuits, Prentice Hall, New Jersey (1999).
- 18. D. Dimos, P. Chaudhari, J. Mannhart, Phys. Rev. B57, 13873 (1998).
- 19. A. Gurevich, E.A. Pashitskii, Phys. Rev. B57, 13878 (1998).
- G. Hammerl, A. Schmehl, R.R. Schulz, B. Goetz, H. Bielefeldt, C.W. Schneider, H. Hilgenkamp, J. Mannhart, Nature (London) 407, 162 (2000).
- 21. Л.В. Белевцов, ФНТ **31**, 155 (2005).
- 22. Л.В. Белевцов, А.А. Костиков, ЖЭТФ 128, 586 (2005).
- 23. M.W. Coffey, J.R. Clem, Phys. Rev. Lett. 67, 386 (1991).
- 24. T.L. Hylton, M.R. Beasley, Phys. Rev. B39, 9042 (1989).
- 25. A. Gurevich, Phys. Rev. B46, R3187 (1992).

L.V. Belevtsov

SURFACE IMPEDANCE IN THE SECOND-ORDER GRANULATED SUPERCONDUCTORS IN MIXED STATE

A joint influence of granule boundaries and Abrikosov vortices on the behavior of surface impedance Z_s of second-order superconductor has been investigated. Two-liquid model and vortex-layered model for intragranular transport current in granules, as well as the model of intergranular Josephson junction have been considered. A limit of low-density Abrikosov vortices is analysed when their interaction can be neglected. It follows that in contrast to the Mawatari vortex-free model [1], the surface resistance R_s monotonously depends on critical-current density J_{cj} at the intergranular boundaries and on granule size *a*. The presence of Abrikosov vortices results in a more intensive microwave dissipation with J_{cj} and *a* increase.

Fig. 1. Dependence of surface resistance $R_s = \text{Re}(Z_s)$ (*a*) and surface reactivity $X_s = -$ Im(Z_s) (δ) on critical-current density J_{cj} in intergranule junctions for $a/\lambda = 1$ and $\Phi = 170\Phi_0$. Parameters R_s and X_s have been normalized to parameters R_{s0} and X_{s0} , respectively, in the absence of granule boundaries. In the inserts there are dependences of the ratio between «vortex» parameter R_s^{ν} from expression (20) and «vortex-free» parameter R_s^0 (*a*), and similarly for surface reactivity X_s^{ν}/X_s^0 (δ) on J_{cj}/J_0

Fig. 2. Dependence of surface resistance $R_s = R_{sj} + R_{sg}(a)$ and surface reactivity $X_s = X_{sj} + X_{sg}(\delta)$ on the typical granule size a/λ for $J_{cj} = 10^{-2}J_0$ and $\Phi = 170\Phi_0$. In the inserts there are analogous dependences for «vortex» parameters $R_s^v(a)$ and $X_s^v(\delta)$ reduced to «vortex-free» parameters R_s^0 and X_s^0