PACS: 62.50.-p, 64.10.+h, 64.30.+t

Е.П. Троицкая 1 , В.В. Чабаненко 1 , Е.Е. Горбенко 2 , Н.В. Кузовой 2 ЭНЕРГИЯ НУЛЕВЫХ КОЛЕБАНИЙ В СЖАТЫХ КРИСТАЛЛАХ РЯДА Ne-Xe

Статья поступила в редакцию 18 июля 2006 года

В рамках модели К.Б. Толпыго с помощью динамической матрицы, построенной на основе неэмпирического короткодействующего потенциала отталкивания, рассчитаны фононные частоты сжатых кристаллов инертных газов (КИГ) с учетом электрон-фононного взаимодействия в точках главного значения Чади-Коэна. Обсуждается метод интегрирования по точкам главного значения. Анализируется мнимость частоты ГЦК-решетки. Проведено исследование квантовых эффектов, в частности энергии нулевых колебаний E_{zp} в ряду кристаллов Ne-Xe при различных давлениях.

1. Введение

Прогресс современной экспериментальной техники позволяет в лабораторных условиях исследовать электронные и атомные свойства твердых тел при мультимегабарных давлениях [1,2]. Кристаллы инертных газов являются постоянным объектом исследования для изучения фазовых переходов, упругих свойств, динамики и термодинамики именно при таких высоких давлениях (см. [2–5] и ссылки там). Легкие КИГ (неон, аргон), относящиеся к классу «Low-Z materials», интересны также и как объект для изучения квантовых эффектов. В этом случае основным требованием к теории становится возможность описания свойств и явлений из первых принципов. Из большого числа теоретических работ за последние 5–10 лет следует выделить *аb initio* расчеты на основе теории функционала плотности (DFT) [6] и приближения локальной плотности (LDA) для обменно-корреляционного потенциала [7]. Это работы по упругим свойствам, фазовым переходам, электронной структуре и колебательным свойствам КИГ при высоких давлениях [8–12].

В [13–19] с помощью метода сильной связи реализовано адиабатическое приближение, необходимое для построения динамики решетки КИГ. Оно

¹Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

²Луганский национальный педагогический университет им. Т. Шевченко ул. Оборонная, 2, г. Луганск, 91011, Украина

позволяет провести рассмотрение разнообразных свойств КИГ из первых принципов, опираясь лишь на знание волновых функций основного и возбужденного состояний атомов.

В цикле [20–24] исследованы фононные дисперсионные кривые сжатых кристаллов Ne, Ar, Kr, Xe в симметричных направлениях для выяснения роли различных взаимодействий, прежде всего электрон-фононного.

В работе [25] построена динамическая матрица, позволяющая рассчитать фононные частоты кристаллов ряда Ne–Xe под давлением в любой точке зоны Бриллюэна (BZ) с учетом электрон-фононного взаимодействия. Динамическая матрица строится на основе неэмпирического короткодействующего потенциала отталкивания, не содержащего ни подгоночных, ни вариационных параметров [26–28].

2. Выбор точек Чади-Коэна

Значительную трудность до недавнего времени представляло интегрирование по BZ (один из вариантов см. в [25]). В настоящей работе применяется метод интегрирования по точкам главного значения [29] в варианте Чади-Коэна [30]. Сущность этого метода состоит в замене интеграла по BZ суммой значений подынтегральной функции в особых точках (точках главного значения), найденных теоретико-групповыми методами.

При изучении свойств кристаллов обычно встречаются интегралы по BZ в виде:

$$I = \int_{BZ} f(\mathbf{k}) d^3 k = \frac{(2\pi)^3}{\Omega} \overline{f} , \qquad (1)$$

где $f(\mathbf{k})$ — периодическая функция волнового вектора, Ω — объем элементарной ячейки. Из (1) видно, что этот интеграл может быть выражен как произведение объема BZ и среднего значения $f(\mathbf{k})$.

Используя свойства симметрии, функцию $f(\mathbf{k})$ разлагаем в линейную комбинацию плоских волн следующим образом:

$$f(\mathbf{k}) = \sum_{i=0}^{\infty} a_i G_i(\mathbf{k}), \qquad (2)$$

где $G_i(\mathbf{k})$ зависят от структуры решетки и не зависят от функции $f(\mathbf{k})$, $G_0(\mathbf{k}) = 1$, а индекс i пробегает все значения эквивалентных векторов решетки; коэффициент a_i зависит от функции $f(\mathbf{k})$. Подставив (2) в (1), получаем

$$I = \frac{(2\pi)^3}{\Omega} \overline{f} = \frac{(2\pi)^3}{\Omega} a_0.$$
 (3)

Легко показать [29], что все члены в (2), кроме первого (i = 0), не дают вклада в интеграл (1). Следовательно, среднее значение \overline{f} есть ничто иное, как первый член в ряду (2).

Таким образом, желательно найти такую точку главного значения, как т. \mathbf{k}^* , для которой $G_i(\mathbf{k}^*) = 0$ для всех положительных целых i. Если это будет сделано, то фактически

$$f(\mathbf{k}^*) \equiv a_0 \equiv \overline{f} \ . \tag{4}$$

Это требование, конечно, слишком сильное, но можно найти такое \mathbf{k}^* , чтобы (4) выполнялось в хорошем приближении. Координаты такой точки главного значения \mathbf{k}^* были найдены в [31]: $\mathbf{k}^* = [0.6223; 0.2953; 0]$ для ГЦК-решетки.

Вообще говоря, чтобы получить необходимую точность в расчетах, нужно знать значения функции \overline{f} в большом числе тт. \mathbf{k} . Авторы [30] предложили метод генерирования этих точек на основе двух точек главного значения для определения $f(\mathbf{k})$ в кристалле. Из (2) имеем

$$f(\mathbf{k}) = \frac{1}{4} [3f(\mathbf{k}_1) + f(\mathbf{k}_2)], \quad \mathbf{k}_1 = \left[\frac{3}{4}; \frac{1}{4}; \frac{1}{4} \right], \quad \mathbf{k}_2 = \left[\frac{1}{4}; \frac{1}{4}; \frac{1}{4} \right].$$
 (5)

Точки \mathbf{k}_1 и \mathbf{k}_2 используются в [30] для генерирования десяти устойчивых точек главного значения, по которым среднее $f(\mathbf{k})$ по зоне определяется с высокой степенью точности. Координаты и соответствующий вес α_i этих точек для ГЦК-структуры следующие:

$$\mathbf{k}_{1} = \left[\frac{7}{8}; \frac{3}{8}; \frac{1}{8}\right], \quad \alpha_{1} = \frac{3}{16}; \quad \mathbf{k}_{2} = \left[\frac{7}{8}; \frac{1}{8}; \frac{1}{8}\right], \quad \alpha_{2} = \frac{3}{32};$$

$$\mathbf{k}_{3} = \left[\frac{5}{8}; \frac{5}{8}; \frac{1}{8}\right], \quad \alpha_{3} = \frac{3}{32}; \quad \mathbf{k}_{4} = \left[\frac{5}{8}; \frac{3}{8}; \frac{3}{8}\right], \quad \alpha_{4} = \frac{3}{32};$$

$$\mathbf{k}_{5} = \left[\frac{5}{8}; \frac{3}{8}; \frac{1}{8}\right], \quad \alpha_{5} = \frac{3}{16}; \quad \mathbf{k}_{6} = \left[\frac{5}{8}; \frac{1}{8}; \frac{1}{8}\right], \quad \alpha_{6} = \frac{3}{32};$$

$$\mathbf{k}_{7} = \left[\frac{3}{8}; \frac{3}{8}; \frac{3}{8}\right], \quad \alpha_{7} = \frac{1}{32}; \quad \mathbf{k}_{8} = \left[\frac{3}{8}; \frac{3}{8}; \frac{1}{8}\right], \quad \alpha_{8} = \frac{3}{32};$$

$$\mathbf{k}_{9} = \left[\frac{3}{8}; \frac{1}{8}; \frac{1}{8}\right], \quad \alpha_{9} = \frac{3}{32}; \quad \mathbf{k}_{10} = \left[\frac{1}{8}; \frac{1}{8}; \frac{1}{8}\right], \quad \alpha_{10} = \frac{1}{32}.$$

Рассчитанные нами суммы $\chi_{\alpha\beta}(\mathbf{k})$ и $\phi_{\alpha\beta}(\mathbf{k})$ для тт. \mathbf{k}^* , \mathbf{k}_1 , \mathbf{k}_2 из (5) и вышеуказанных десяти точек в (6) приведены в табл. 1.

3. Получение характеристик тепловых и нулевых колебаний

Энергия связи E_{coh} , решеточная теплоемкость C_V и среднеквадратичное смещение $\langle u^2 \rangle$ в гармоническом приближении описываются известными формулами [19,32]:

$$E_{\text{coh}} = E_{zp} + E^* = \frac{N_A \Omega}{(2\pi)^3} \sum_{\lambda} \int d^3 k \hbar \omega_{\lambda} \left(\mathbf{k} \right) \left[\frac{1}{2} + n_{\lambda} \left(\mathbf{k} \right) \right], \tag{7}$$

Таблица 1

Коэффициенты кулоновских φ_{αβ} и ван-дер-ваальсовых χ_{αβ} сил в точках главного значения для ГЦК-решетки

	•			_								
Суммы	$-\chi_{xx}$	$-\chi_{\nu\nu}$	$-\chi_{zz}$	$-\chi_{xy}$	$-\chi_{xz}$	$-\chi_{\nu z}$	Φ_{xx}	$\Phi_{\nu\nu}$	Φ_{zz}	Φ_{xy}	Φ_{xz}	$\Phi_{\nu z}$
					Для одной точки	г точки						
$\mathbf{k}^* = [0.6223; 0.2953; 0] 1.9831$	1.9831	0.9718	1.0516	0.7502	0	0	-1.7020	0.7203	0.9817	-1.6550	0	0
					Для двух точек	точек						
$\mathbf{k}_1 = [3/4; 1/4; 1/4]$	0.71071	0.71071	0.71071 0.71071 0.71071		0.52168 0.52168 0.52168	0.52168	0	0	0	-1.9502	-1.9502	-1.9502
$\mathbf{k}_2 = [1/4; 1/4; 1/4]$	2.20618	2.20618 1.20888	1.20888	0.49711	0.49711 0.49711 0.48802	0.48802	-1.2807	0.64035	0.64035	-0.9280	-0.9280	-0.8097
				<i>(</i>	Для десяти точек	1 точек						
$\mathbf{k}_1 = [7/8; 3/8; 1/8]$	2.2778	1.1530	1.5828	0.3482	0.1447	0.3446	-0.9643	0.7296	0.2347	-0.6080	-0.2511	-0.5555
$\mathbf{k}_2 = [7/8; 1/8; 1/8]$	2.7812	1.1016	1.1016	0.1457	0.1457	0.1421	-1.9455	0.9728	0.9728	-0.2723	-0.2722	-0.2190
$\mathbf{k}_3 = [5/8;5/8;1/8]$	1.4259	1.4259	1.8467	0.8403	0.3482	0.3482	0.1238	0.1238	-0.2476	-1.4696	-0.6022	-0.6022
$\mathbf{k}_4 = [5/8;3/8;3/8]$	1.6115	1.3158	1.3158	0.8463	0.8463	0.8413	-0.4180	0.2090	0.2090	-1.5601	-1.5601	-1.4947
$\mathbf{k}_5 = [5/8; 3/8; 1/8]$	1.1839	1.1193	1.2494	0.8555	0.3530	0.3479	-1.0945	0.4558	0.6387	-1.7412	8889.0-	-0.6213
$\mathbf{k}_6 = [5/8; 1/8; 1/8]$	2.1397	0.8354	0.8354	0.3598	0.3598	0.1445	-2.3626	1.1813	1.1813	-0.8434	-0.8433	-0.2731
$\mathbf{k}_7 = [3/8; 3/8; 3/8]$	1.1764	1.1764	1.1764	0.8577	0.8577	0.8577	0	0	0	-1.8492	-1.8491	-1.8491
$\mathbf{k}_8 = [3/8;3/8;1/8]$	1.0905	1.0905	0.7863	0.8800	0.3596	0.3596	-0.5478	-0.5478	1.0956	-2.4923	-0.9283	-0.9283
$\mathbf{k}_9 = [3/8;1/8;1/8]$	1.0855	0.4661	0.4661	0.3727	0.3727	0.1513	-2.5024	1.2512	1.2512	-1.5652	-1.5651	-0.5593
$\mathbf{k}_{10} = [1/8; 1/8; 1/8]$	0.2122	0.2122	0.2122	0.1585	0.1585	0.1585	0	0	0	-2.0520	-2.0519	-2.0519

Примечание. **к** - точка главного значения из [31], остальные двенадцать получены методом Чади-Коэна [30].

где E_{zp} — энергия нулевых колебаний (ей соответствует слагаемое 1/2 в скобках в (7)), N_A — число Авогадро, $\Omega = 2a^3$ — объем элементарной ячейки для КИГ в ГЦК-фазе;

$$C_{V} = \frac{R\Omega}{(2\pi)^{3}} \sum_{\lambda} \int d^{3}k \left[\left(\frac{\hbar\omega_{\lambda}(\mathbf{k})}{k_{B}T} \right)^{2} n_{\lambda}(\mathbf{k}) \left(n_{\lambda}(\mathbf{k}) + 1 \right) \right],$$

$$n_{\lambda}(\mathbf{k}) = \left[\exp\left(\frac{\hbar\omega_{\lambda}(\mathbf{k})}{k_{B}T} \right) - 1 \right]^{-1},$$
(8)

где $k_B = 1.3806662 \cdot 10^{-23}$ J/K — постоянная Больцмана, $R = k_B N_A$;

$$\left\langle u^{2}\right\rangle = \frac{\Omega\hbar^{2}}{\left(2\pi\right)^{3}M} \sum_{\lambda} \int d^{3}k \, \frac{n_{\lambda}(\mathbf{k}) + 0.5}{\hbar\omega_{\lambda}(\mathbf{k})}.$$
 (9)

Для вычисления интегралов по BZ используем описанный выше метод Чади–Коэна [30].

Тогда энергия нулевых колебаний будет

$$E_{zp} = \frac{1}{2} \sum_{\lambda} \hbar \omega_{\lambda}(\mathbf{k}). \tag{10}$$

Например, для двухточечной схемы (5) имеем

$$E_{zp} = \frac{1}{2} \left[\frac{3}{4} \sum_{\lambda} \hbar \omega_{\lambda}(\mathbf{k}_{1}) + \frac{1}{4} \sum_{\lambda} \hbar \omega_{\lambda}(\mathbf{k}_{2}) \right]. \tag{11}$$

В работе [25] нами подробно описано получение частот кристаллов ряда Ne–Xe в любой т. **k** с помощью построенной динамической матрицы.

В табл. 2 приведены рассчитанные частоты для всего ряда Ne–Xe при сжатиях $\Delta V/V_0$ от 0 до 0.8, необходимые для вычисления термодинамических свойств (8), (9) и энергии нулевых колебаний (11) по двухточечной схеме Чади–Коэна (5).

Особое внимание следует обратить на мнимые частоты в табл. 2. Они свидетельствуют об абсолютной неустойчивости ГЦК-решетки. При известном ГЦК-ГПУ-переходе в Хе [33,34] ГЦК-решетка становится менее энергетически выгодной, чем ГПУ, но остается еще устойчивой. Мнимость частоты означает, что смещения атомов решетки под действием малой деформации будут экспоненциально (а не периодически) изменяться со временем. Для потенциальной энергии кристалла размягчение «критических» колебаний соответствует уплощению ее минимума, определяющего колебания атомов возле положения равновесия, абсолютная неустойчивость — вырождению минимума в прямую, мнимость частоты — образованию максимума энергии.

В табл. 3 представлена E_{zp} для КИГ при различных степенях сжатия.

Таблица 2 Частоты $\hbar \omega_{\lambda k}$ [meV] в моделях М3 и М3а при разных степенях сжатия для КИГ (Ne–Xe) в тт. k_1 [3/4;1/4;1/4] и k_2 [1/4;1/4;1/4]

			0.2		1	1		0.0
ΔV	VV_0	0.0	0.3	0.4	0.5	0.6	0.7	0.8
	L	2	3	4 No.	5	6	7	8
	~ Å	2 221	1 000	Ne	1 771	1 6 1 1	1 400	1 202
1. 2	a, Å	2.231	1.980	1.882	1.771	1.644	1.489	1.303
k , λ	p, GPa	0.126	2.402 12.451	5.911	15.644 22.263	47.049	174.863 46.44	952.777
	1-	5.026		16.424		31.313		75.185
	\mathbf{k}_1	4.292 6.727	10.413 17.131	13.661 22.745	18.422 31.017	25.765 43.898	37.951 65.576	60.896 107.122
M3		3.087	6.096	7.941	10.655	14.843	21.838	35.279
	lr.	3.087	6.096	7.941	10.655	14.843	21.838	35.279
	\mathbf{k}_2	6.079	13.173	17.55	24.007	34.083	51.108	82.966
		4.291	10.406	13.647	20.486	25.839	37.954	61.956
	\mathbf{k}_1	5.025	12.410	16.283	19.212	38.038	44.606	87.617
	N ₁	6.721	16.962	22.266	29.016	41.391	54.067	58.049 <i>i</i>
M3a		2.582	6.095	7.931	10.664	14.905	22.172	38.103
	\mathbf{k}_2	2.582	6.095	7.931	10.664	14.905	22.172	38.103
	 2	5.083	13.098	17.35	23.294	32.207	44.749	54.735
				Ar			1 1111 12	
	a, Å	2.656	2.358	2.240	2.108	1.957	1.778	1.553
\mathbf{k}, λ	p, GPa	0.016	4.358	11.127	29.705	88.875	328.948	1842.881
	•	5.831	14.321	18.623	24.843	34.482	51.095	85.617
	\mathbf{k}_1	4.954	11.865	15.338	20.353	28.115	41.488	69.335
N/2		7.861	19.914	26.069	34.977	48.794	72.614	122.013
M3		2.782	6.554	8.458	11.233	15.576	23.196	39.548
	\mathbf{k}_2	2.782	6.554	8.458	11.233	15.576	23.196	39.548
		5.887	15.237	20.035	26.989	37.798	56.488	95.407
M3a	\mathbf{k}_1	4.953	11.817	15.519	20.405	40.102	41.503	70.397
		5.826	14.132	17.537	31.332	38.539	39.455	105.137
		7.839	19.473	24.908	32.761	28.132	58.495	109.776i
IVIJU	-	2.782	6.549	8.472	11.267	15.703	23.791	43.369
	\mathbf{k}_2	2.782	6.549	8.472	11.267	15.703	23.791	43.369
		5.877	15.063	19.614	25.936	34.937	47.074	43.087
	9 I	2.024	2.505	Kr	0.040	2.001	1.001	1.653
	a, Å	2.824	2.507	2.382	2.242	2.081		
k , λ	p, GPa	0.0032	4.468	10.870	27.190	74.576		
		4.417	10.009	12.516	15.908	20.792		
	\mathbf{k}_1	3.751	8.252	10.236	12.907	16.738	1.891 1.652 2 245.234 1156.693 2 28.566 43.248 3 22.819 34.302	
M3		5.956	13.984	17.64	22.603	29.776		
	1.	2.099	4.521	5.588	7.038	9.144	12.548	19.125
	\mathbf{k}_2	2.099	4.521	5.588 13.568	7.038	9.144	12.548	19.125 49.295
		4.459 3.750	10.702 9.853	10.299	17.469 21.209	23.123 16.738	32.166 22.886	35.263
	lz.	4.411	8.187	11.613	12.924	22.208	30.319	28.943
	\mathbf{k}_1	5.937	13.701	16.997	18.102	26.496	32.616	46.271
M3a		2.099	4.527	5.593	7.056	9.215	12.843	20.646
	ka	2.099	4.527	5.593	7.056	9.215	12.843	20.646
	\mathbf{k}_2	4.451	10.595	13.34	16.981	22.028	29.363	39.525
		1.731	10.333	13.34	10.701	22.020	49.303	39.343

Продолжение табл. 2

1		2	3	4	5	6	7	8
				Xe				
	a, Å	3.063	2.720	2.584	2.431	2.257	2.051	1.791
k, λ	p, GPa	-0.034	4.349	10.096	23.454	57.653	162.717	655.529
		3.845	8.072	9.607	11.364	13.393	16.127	23.249
	\mathbf{k}_1	3.267	6.624	7.794	9.099	10.566	12.582	18.562
M3		5.184	11.331	13.644	16.342	19.519	23.724	33.518
		1.821	3.592	4.212	4.929	5.823	7.315	11.797
	\mathbf{k}_2	1.821	3.592	4.212	4.929	5.823	7.315	11.797
		3.880	8.672	10.508	12.673	15.27	18.773	26.732
		3.266	6.620	7.803	9.165	13.393	16.306	23.553
	\mathbf{k}_1	3.841	8.003	9.266	11.471	10.857	13.617	20.807
M3a		5.168	11.167	13.341	15.852	18.779	22.632	30.307
IVISa		1.821	3.610	4.239	4.997	6.013	7.827	12.866
	\mathbf{k}_2	1.821	3.610	4.239	4.997	6.013	7.827	12.866
		3.872	8.607	10.391	12.476	14.955	18.254	25.29

Примечание. Жирным шрифтом выделены мнимые частоты.

 $\label{eq:2.2} \begin{tabular}{ll} \begin{t$

Величина	Модель	$\Delta V/V_0$	Ne	Ar	Kr	Xe
1	2	3	4	5	6	7
	M2*	0.0	81.63	98.91	75.02	64.47
	M2a [*]	0.0	81.5	98.2	74.2	64.1
		0.0	83.25	99.48	75.45	65.81
		0.3	209.19	245.48	171.71	138.69
		0.4	276.86	319.18	214.65	164.75
	M2**	0.5	375.7	425.37	272.47	194.01
		0.6	528.83	589.2	355.25	226.31
$E_{zp}^{(1)}$, K		0.7	783.63	869.72	486.12	266.35
E_{zp} , K		0.8	1262.84	1446.58	731.25	371.96
		0.0	83.22	99.35	75.33	65.72
		0.3	208.18	242.21	169.18	135.26
		0.4	273.69	300.13	_	166.37
	M2a**	0.5	349.05	426.22	271.86	192.88
		0.6	527.37	569.89	347.61	225.14
		0.7	732.95	781.08	461.51	268.37
		0.8	847.91	_	634.43	373.35
	M2*	0.0	79.84	96.91	73.37	63.1
	M2a [*]	0.0	79.65	96.16	72.49	62.74
		0.0	81.36	97.29	73.79	64.38
(2)		0.3	204.28	239.72	167.61	135.32
$E_{zp}^{(2)}$, K		0.4	270.13	311.56	209.38	160.57
	M2**	0.5	366.66	415.02	265.58	188.8
		0.6	515.88	574.59	345.98	219.73
		0.7	763.91	847.69	472.96	257.76
		0.8	1229.7	1409.09	710.65	360.16

Продолжение табл. 3

$E_{pp}^{(1)}, K \\ E_{pp}^{(2)}, K \\ M2a^{**} \\ D.0 \\ A \\ C_{pp}^{(3)}, K \\ M2a^{**} \\ D.1 \\ C_{pp}^{(3)}, K \\ M2a^{**} \\ D.1 \\ C_{pp}^{(3)}, C_{pp$	1	2	3	4	5	6	7
$E_{2p}^{(2)}, K \\ E_{2p}^{(2)}, K \\ E_{2p}^{(3)}, K \\ E_{2p}^$	1						
$E_{p}^{(2)}, K \\ E_{p}^{(2)}, K \\ E_{p}^{(2)}, K \\ E_{p}^{(2)}, K \\ E_{p}^{(3)}, K \\ E_{p$							
$E_{2p}^{(1)}, K \\ E_{2p}^{(1)}, K \\ E_{2p}^$							
$E_{zp}^{(10)}, K = \begin{bmatrix} 0.6 & 532.45 & 550.58 & 336.45 & 217.98 \\ 0.7 & 696.44 & 721.64 & 439.97 & 259.9 \\ 0.8 & - & - & 580.18 & 360.59 \\ \hline M2^* & 0.0 & 80.94 & 98.27 & 73.92 & 63.54 \\ M2a^* & 0.0 & 80.75 & 97.52 & 73.05 & 63.18 \\ \hline M2^{**} & 0.0 & 82.27 & 98.15 & 74.45 & 64.91 \\ \hline M2^{**} & 0.0 & 82.27 & 98.15 & 74.45 & 64.91 \\ \hline M2^{**} & 0.0 & 82.23 & 98.01 & 74.34 & 64.81 \\ \hline M2a^{**} & 0.0 & 82.23 & 98.01 & 74.34 & 64.81 \\ \hline 0.0 & 82.23 & 98.01 & 74.34 & 64.81 \\ \hline 0.3 & 204.34 & 237.5 & 166.0 & 135.05 \\ \hline M3^* & 0.0 & 81.09 & 99.09 & 75.02 & 64.47 \\ \hline M3a^* & 0.0 & 80.92 & 98.38 & 74.19 & 64.14 \\ \hline 0.0 & 86.15 & 99.9 & 75.66 & 65.85 \\ \hline 0.3 & 214.84 & 247.24 & 172.9 & 139.52 \\ \hline 0.4 & 283.79 & 322.03 & 216.64 & 166.48 \\ \hline M3^{**} & 0.5 & 385.21 & 430.23 & 275.86 & 197.49 \\ \hline 0.6 & 542.5 & 597.96 & 361.23 & 233.52 \\ \hline 0.7 & 805.8 & 887.2 & 497.16 & 281.88 \\ \hline 0.8 & 1307.01 & 1488.38 & 753.83 & 404.5 \\ \hline 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ \hline 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ \hline 0.4 & 280.83 & 302.95 & - & 168.1 \\ \hline 0.6 & 542.25 & 579.42 & 353.89 & 232.19 \\ \hline 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ \hline 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ \hline 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ \hline 0.8 & 971.2 & - & 662.86 & 404.11 \\ \hline M3^* & 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ \hline M3^* & 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ \hline M3^* & 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ \hline M3^* & 0.0 & 79.28 & 96.5 & 72.49 & 62.74 \\ \hline 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ \hline 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ \hline 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ \hline 0.5 & 377.76 & 420.63 & 267.51 & 192.85 \\ \hline 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ \hline 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ \hline 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ \hline 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ \hline 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ \hline 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ \hline 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ \hline 0.0 & 6548.05 & 582.64 & 343.47 & 226.39 \\ \hline 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \hline \end{array}$	$E^{(2)}$ V	M2a**					
$E_{p}^{(10)}, K = \begin{bmatrix} 0.7 & 696.44 & 721.64 & 439.97 & 259.9 \\ 0.8 & - & - & 580.18 & 360.59 \\ M2a^* & 0.0 & 80.94 & 98.27 & 73.92 & 63.54 \\ M2a^* & 0.0 & 80.75 & 97.52 & 73.05 & 63.18 \\ M2^{**} & 0.0 & 82.27 & 98.15 & 74.45 & 64.91 \\ M2^{**} & 0.0 & 82.23 & 98.01 & 74.34 & 64.81 \\ M2a^{**} & 0.0 & 82.23 & 98.01 & 74.34 & 64.81 \\ M3a^* & 0.0 & 81.09 & 99.09 & 75.02 & 64.47 \\ M3a^* & 0.0 & 80.92 & 98.38 & 74.19 & 64.14 \\ 0.0 & 86.15 & 99.9 & 75.66 & 65.85 \\ 0.3 & 214.84 & 247.24 & 172.9 & 139.52 \\ 0.4 & 283.79 & 322.03 & 216.64 & 166.48 \\ 0.5 & 385.21 & 430.23 & 275.86 & 197.49 \\ 0.6 & 542.5 & 597.96 & 361.23 & 233.52 \\ 0.7 & 805.8 & 887.2 & 497.16 & 281.88 \\ 0.8 & 1307.01 & 1488.38 & 753.83 & 404.5 \\ 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.8 & 971.5 & - & 662.86 & 404.11 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.5 & 337.7.76 & 420.63 & 267.51 & 192.85 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 90.78 & 238.51 & 166.63 & 135.19 \\ 0.0 & 654.80 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ 0.7 & 723.$	E_{zp} , K	Wi∠a					
$E_{p}^{(10)}, K = \begin{bmatrix} 0.8 & - & - & 580.18 & 360.59 \\ M2a^* & 0.0 & 80.94 & 98.27 & 73.92 & 63.54 \\ M2a^* & 0.0 & 80.75 & 97.52 & 73.05 & 63.18 \\ M2^{**} & 0.0 & 82.27 & 98.15 & 74.45 & 64.91 \\ M2^{**} & 0.0 & 82.27 & 98.15 & 74.45 & 64.91 \\ M2^{**} & 0.0 & 82.23 & 98.01 & 74.34 & 64.81 \\ M2^{**} & 0.0 & 82.23 & 98.01 & 74.34 & 64.81 \\ M3a^* & 0.0 & 81.09 & 99.09 & 75.02 & 64.47 \\ M3a^* & 0.0 & 80.92 & 98.38 & 74.19 & 64.14 \\ 0.0 & 86.15 & 99.9 & 75.66 & 65.85 \\ 0.3 & 214.84 & 247.24 & 172.9 & 139.52 \\ 0.4 & 283.79 & 322.03 & 216.64 & 166.48 \\ 0.5 & 385.21 & 430.23 & 275.86 & 197.49 \\ 0.6 & 542.5 & 597.96 & 361.23 & 233.52 \\ 0.7 & 805.8 & 887.2 & 497.16 & 281.88 \\ 0.8 & 1307.01 & 1488.38 & 753.83 & 404.5 \\ 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.0 & 87.6 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 65.48.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.3$							
$E_{2p}^{(10)}, K = \begin{bmatrix} M2^* & 0.0 & 80.94 & 98.27 & 73.92 & 63.54 \\ M2a^* & 0.0 & 80.75 & 97.52 & 73.05 & 63.18 \\ M2^{**} & 0.0 & 82.27 & 98.15 & 74.45 & 64.91 \\ 0.3 & 205.42 & 240.85 & 168.44 & 136.11 \\ M2a^{**} & 0.0 & 82.23 & 98.01 & 74.34 & 64.81 \\ 0.3 & 204.34 & 237.5 & 166.0 & 135.05 \\ M3^* & 0.0 & 81.09 & 99.09 & 75.02 & 64.47 \\ M3a^* & 0.0 & 80.92 & 98.38 & 74.19 & 64.14 \\ 0.0 & 86.15 & 99.9 & 75.66 & 65.85 \\ 0.3 & 214.84 & 247.24 & 172.9 & 139.52 \\ 0.4 & 283.79 & 322.03 & 216.64 & 166.48 \\ 0.5 & 385.21 & 430.23 & 275.86 & 197.49 \\ 0.6 & 542.5 & 597.96 & 361.23 & 233.52 \\ 0.7 & 805.8 & 887.2 & 497.16 & 281.88 \\ 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.5 & 358.22 & 431.31 & 275.37 & 196.38 \\ 0.6 & 542.25 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.8 & 97.12 & 97.79 & 400.81 \\ 0.9 & 97.72 & 97.79 & 400.81 \\ 0.0 & 87.60 & $				090.44	721.04		
$E_{2p}^{(10)},K \\ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M2*		90.04	09.27		
$E_{2p}^{(10)}, K \\ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		*	•				
Base Power State (1) M2 0.3 205.42 240.85 168.44 136.11 M2a*** 0.0 82.23 98.01 74.34 64.81 M3** 0.0 81.09 99.09 75.02 64.47 M3a** 0.0 80.92 98.38 74.19 64.14 0.0 86.15 99.9 75.66 65.85 0.3 214.84 247.24 172.9 139.52 0.4 283.79 322.03 216.64 166.48 M3** 0.5 385.21 430.23 275.86 197.49 0.6 542.5 597.96 361.23 233.52 0.7 805.8 887.2 497.16 281.88 0.8 1307.01 1488.38 753.83 404.5 0.0 86.12 99.76 75.54 65.76 0.3 213.85 243.98 170.37 136.11 M3a** 0.5 358.22 431.31 275.37 65.76							
M2a**	$E_{zp}^{(10)}$, K	M2**					
M3* 0.0 81.09 99.09 75.02 64.47 M3a* 0.0 80.92 98.38 74.19 64.14 0.0 86.15 99.9 75.66 65.85 0.3 214.84 247.24 172.9 139.52 0.4 283.79 322.03 216.64 166.49 0.6 542.5 597.96 361.23 233.52 0.7 805.8 887.2 497.16 281.88 0.8 1307.01 1488.38 753.83 404.5 0.8 1307.01 1488.38 753.83 404.5 0.0 86.12 99.76 75.54 65.76 0.3 213.85 243.98 170.37 136.11 0.4 280.83 302.95 — 166.31 0.5 358.22 431.31 275.37 196.38 0.6 542.22 579.42 353.89 232.19 0.7 759.12 802.61 473.57 283.19 0.8 971.2 — 662.86 404.11 M3* 0.0 79.26 97.26 73.37 63.1 M3* 0.0 79.08 96.5 72.49 62.74 0.0 87.6 97.75 74.02 64.42 0.3 210.84 241.73 168.96 136.26 0.4 278.39 314.83 211.67 162.56 0.5 377.76 420.63 267.51 192.85 0.6 531.92 584.76 352.96 228.25 0.7 790.1 868.12 486.02 276.63 0.8 1282.49 1458.39 737.79 400.81 M3** 0.0 84.65 97.62 73.9 64.32 0.3 209.78 238.51 166.63 135.19 0.4 275.32 305.27 204.9 159.71 M3** 0.5 363.75 438.02 272.41 191.38 M3** 0.5 363.75 438.02 272.41 191.38 0.6 548.05 582.64 343.47 226.39 0.7 723.79 744.16 453.32 277.89	-r						
M3**		M2a**					
$E_{2p}^{(1)}, K = \begin{bmatrix} M3a^* & 0.0 & 80.92 & 98.38 & 74.19 & 64.14 \\ 0.0 & 86.15 & 99.9 & 75.66 & 65.85 \\ 0.3 & 214.84 & 247.24 & 172.9 & 139.52 \\ 0.4 & 283.79 & 322.03 & 216.64 & 166.48 \\ 0.5 & 385.21 & 430.23 & 275.86 & 197.49 \\ 0.6 & 542.5 & 597.96 & 361.23 & 233.52 \\ 0.7 & 805.8 & 887.2 & 497.16 & 281.88 \\ 0.8 & 1307.01 & 1488.38 & 753.83 & 404.5 \\ 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.0 & 87.6 & 97.26 & 73.37 & 63.1 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ 0.7 & 723.79$							
$E_{2p}^{(1)}, K = \begin{bmatrix} 0.0 & 86.15 & 99.9 & 75.66 & 65.85 \\ 0.3 & 214.84 & 247.24 & 172.9 & 139.52 \\ 0.4 & 283.79 & 322.03 & 216.64 & 166.48 \\ 0.5 & 385.21 & 430.23 & 275.86 & 197.49 \\ 0.6 & 542.5 & 597.96 & 361.23 & 233.52 \\ 0.7 & 805.8 & 887.2 & 497.16 & 281.88 \\ 0.8 & 1307.01 & 1488.38 & 753.83 & 404.5 \\ 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 30.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ M3a** & 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \hline$		16					
$E_{zp}^{(1)}, K = \begin{bmatrix} 0.3 & 214.84 & 247.24 & 172.9 & 139.52 \\ 0.4 & 283.79 & 322.03 & 216.64 & 166.48 \\ 0.5 & 385.21 & 430.23 & 275.86 & 197.49 \\ 0.6 & 542.5 & 597.96 & 361.23 & 233.52 \\ 0.7 & 805.8 & 887.2 & 497.16 & 281.88 \\ 0.8 & 1307.01 & 1488.38 & 753.83 & 404.5 \\ 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ \hline M3* & 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ M3a* & 0.0 & 79.08 & 96.5 & 72.49 & 62.74 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 97.82 & 305.27 & 204.9 & 159.71 \\ 0.0 & 97.22 & 305.27 & 204.9 & 159.71 \\ 0.0 & 97.$		M3a					
$E_{zp}^{(1)}, K = \begin{bmatrix} 0.4 & 283.79 & 322.03 & 216.64 & 166.48 \\ 0.5 & 385.21 & 430.23 & 275.86 & 197.49 \\ 0.6 & 542.5 & 597.96 & 361.23 & 233.52 \\ 0.7 & 805.8 & 887.2 & 497.16 & 281.88 \\ 0.8 & 1307.01 & 1488.38 & 753.83 & 404.5 \\ 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.5 & 358.22 & 431.31 & 275.37 & 196.38 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ \hline M3^* & 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ M3a^* & 0.0 & 79.08 & 96.5 & 72.49 & 62.74 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.0 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \hline \end{tabular}$	$E_{zp}^{(1)}$, K						
$E_{zp}^{(1)}, K = \begin{bmatrix} 0.5 & 385.21 & 430.23 & 275.86 & 197.49 \\ 0.6 & 542.5 & 597.96 & 361.23 & 233.52 \\ 0.7 & 805.8 & 887.2 & 497.16 & 281.88 \\ 0.8 & 1307.01 & 1488.38 & 753.83 & 404.5 \\ 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89$							
$E_{zp}^{(1)}, K = \begin{bmatrix} 0.6 & 542.5 & 597.96 & 361.23 & 233.52 \\ 0.7 & 805.8 & 887.2 & 497.16 & 281.88 \\ 0.8 & 1307.01 & 1488.38 & 753.83 & 404.5 \\ 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ M3^* & 0.0 & 79.08 & 96.5 & 72.49 & 62.74 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ M3^{**} & 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \hline \end{tabular}$		**					
$E_{zp}^{(1)}, K = \begin{bmatrix} 0.6 & 542.5 & 597.96 & 361.23 & 233.52 \\ 0.7 & 805.8 & 887.2 & 497.16 & 281.88 \\ 0.8 & 1307.01 & 1488.38 & 753.83 & 404.5 \\ 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ M3^* & 0.0 & 79.08 & 96.5 & 72.49 & 62.74 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ M3^{**} & 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \hline \end{tabular}$		M3			430.23	275.86	197.49
$E_{2p}^{(2)}, K = \begin{bmatrix} 0.8 & 1307.01 & 1488.38 & 753.83 & 404.5 \\ 0.0 & 86.12 & 99.76 & 75.54 & 65.76 \\ 0.3 & 213.85 & 243.98 & 170.37 & 136.11 \\ 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ \hline M3a^* & 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ M3a^* & 0.0 & 79.08 & 96.5 & 72.49 & 62.74 \\ \hline 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ \hline 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ M3a^{**} & 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \hline \end{tabular}$			0.6	542.5	597.96	361.23	233.52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$H_{3a}^{**} = \begin{pmatrix} 0.4 & 280.83 & 302.95 & - & 168.1 \\ 0.5 & 358.22 & 431.31 & 275.37 & 196.38 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ \hline & M_3^* & 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ \hline & M_3a^* & 0.0 & 79.08 & 96.5 & 72.49 & 62.74 \\ & & 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ \hline & 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ \hline & 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ \hline & 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ \hline & 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ \hline & 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ \hline & 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ \hline & & 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ \hline & 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ \hline & 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ \hline & M_3a^{**} & 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ \hline & 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ \hline & 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \hline \end{pmatrix}$							
$E_0^{(2)}, K = \begin{bmatrix} M3a^{**} & 0.5 & 358.22 & 431.31 & 275.37 & 196.38 \\ 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \hline \end{tabular}$		M3a**	-			170.37	
$E_0^{(2)}, K = \begin{bmatrix} 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ 0.0 & 87.6 & 97.75 & 72.49 & 62.74 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \hline \end{tabular}$			0.4	280.83	302.95		168.1
$E_0^{(2)}, K = \begin{bmatrix} 0.6 & 542.22 & 579.42 & 353.89 & 232.19 \\ 0.7 & 759.12 & 802.61 & 473.57 & 283.19 \\ 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ 0.0 & 87.6 & 97.75 & 72.49 & 62.74 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \hline \end{tabular}$			0.5	358.22	431.31		
$E_0^{(2)}, K = \begin{bmatrix} 0.8 & 971.2 & - & 662.86 & 404.11 \\ 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ 0.0 & 79.08 & 96.5 & 72.49 & 62.74 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.5 & 377.76 & 420.63 & 267.51 & 192.85 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \end{bmatrix}$			0.6	542.22	579.42		232.19
$E_0^{(2)}, K = \begin{bmatrix} M3^* & 0.0 & 79.26 & 97.26 & 73.37 & 63.1 \\ M3a^* & 0.0 & 79.08 & 96.5 & 72.49 & 62.74 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.5 & 377.76 & 420.63 & 267.51 & 192.85 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \end{bmatrix}$				759.12	802.61	473.57	283.19
$E_0^{(2)}, K = \begin{bmatrix} M3a^* & 0.0 & 79.08 & 96.5 & 72.49 & 62.74 \\ 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.5 & 377.76 & 420.63 & 267.51 & 192.85 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \end{bmatrix}$		4.	0.8	971.2	_	662.86	404.11
$E_0^{(2)}, K = \begin{bmatrix} 0.0 & 87.6 & 97.75 & 74.02 & 64.42 \\ 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.5 & 377.76 & 420.63 & 267.51 & 192.85 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \end{bmatrix}$		M3*	0.0	79.26	97.26	73.37	63.1
$E_0^{(2)}, K = \begin{bmatrix} 0.3 & 210.84 & 241.73 & 168.96 & 136.26 \\ 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.5 & 377.76 & 420.63 & 267.51 & 192.85 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \end{bmatrix}$		M3a [*]	0.0	79.08	96.5	72.49	62.74
$E_0^{(2)}, K = \begin{bmatrix} 0.4 & 278.39 & 314.83 & 211.67 & 162.56 \\ 0.5 & 377.76 & 420.63 & 267.51 & 192.85 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \end{bmatrix}$			0.0	87.6	97.75	74.02	64.42
$E_0^{(2)}, K = \begin{bmatrix} 0.5 & 377.76 & 420.63 & 267.51 & 192.85 \\ 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \end{bmatrix}$			0.3	210.84	241.73	168.96	136.26
$E_0^{(2)}, K = \begin{bmatrix} 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \end{bmatrix}$			0.4	278.39	314.83	211.67	162.56
$E_0^{(2)}, K = \begin{bmatrix} 0.6 & 531.92 & 584.76 & 352.96 & 228.25 \\ 0.7 & 790.1 & 868.12 & 486.02 & 276.63 \\ 0.8 & 1282.49 & 1458.39 & 737.79 & 400.81 \\ 0.0 & 84.65 & 97.62 & 73.9 & 64.32 \\ 0.3 & 209.78 & 238.51 & 166.63 & 135.19 \\ 0.4 & 275.32 & 305.27 & 204.9 & 159.71 \\ 0.5 & 363.75 & 438.02 & 272.41 & 191.38 \\ 0.6 & 548.05 & 582.64 & 343.47 & 226.39 \\ 0.7 & 723.79 & 744.16 & 453.32 & 277.89 \\ \end{bmatrix}$		M3**	0.5	377.76	420.63	267.51	192.85
$E_0^{(2)}, K = \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.6		584.76	352.96	228.25
M3a** 0.0 84.65 97.62 73.9 64.32 0.3 209.78 238.51 166.63 135.19 0.4 275.32 305.27 204.9 159.71 0.5 363.75 438.02 272.41 191.38 0.6 548.05 582.64 343.47 226.39 0.7 723.79 744.16 453.32 277.89	$_{\boldsymbol{L}}(2)$ $_{\boldsymbol{V}}$		0.7	790.1	868.12		276.63
M3a** 0.3 209.78 238.51 166.63 135.19 0.4 275.32 305.27 204.9 159.71 0.5 363.75 438.02 272.41 191.38 0.6 548.05 582.64 343.47 226.39 0.7 723.79 744.16 453.32 277.89	E_0 , \mathbf{K}		0.8	1282.49	1458.39	737.79	400.81
M3a** 0.4 275.32 305.27 204.9 159.71 0.5 363.75 438.02 272.41 191.38 0.6 548.05 582.64 343.47 226.39 0.7 723.79 744.16 453.32 277.89			0.0	84.65	97.62	73.9	64.32
M3a** 0.5 363.75 438.02 272.41 191.38 0.6 548.05 582.64 343.47 226.39 0.7 723.79 744.16 453.32 277.89			0.3	209.78	238.51	166.63	135.19
0.6 548.05 582.64 343.47 226.39 0.7 723.79 744.16 453.32 277.89			0.4	275.32	305.27	204.9	159.71
0.6 548.05 582.64 343.47 226.39 0.7 723.79 744.16 453.32 277.89		M3a**	0.5	363.75	438.02	272.41	191.38
			0.6	548.05	582.64	343.47	226.39
0.8 – 597.99 398.94			0.7	723.79	744.16	453.32	277.89
			0.8	_	_	597.99	398.94

Продолжение табл.	3

1	2	3	4	5	6	7
	M3*	0.0	80.39	98.56	73.92	63.54
	M3a [*]	0.0	80.20	97.8	73.05	63.18
$E_{0zp}^{(10)}$, K	M3**	0.0	85.45	98.6	74.11	64.95
L_{0zp} , K	1V13	0.3	211.74	242.81	169.83	137.04
	M2°**	0.0	85.42	98.46	74.53	64.85
	M3a	0.3	210.68	239.48	167.33	135.97

Примечания: 1. $E_{zp}^{(1)}$, $E_{zp}^{(2)}$, $E_{zp}^{(10)}$ — энергия нулевых колебаний, рассчитанная соответственно по одной точке [31], по двум точкам [30], по десяти точкам [30]. Прочерки в значениях E_{zp} соответствуют мнимым частотам.

2. * — параметры для расчетов E_{zp} взяты из [19], ** — то же из [22,23].

На рисунке показана зависимость энергии нулевых колебаний E_{zp} от сжатия $\Delta V/V_0$, рассчитанная без учета электрон-фононного взаимодействия (модель M3) и с учетом (модель M3a). Видно, что электрон-фононное взаимодействие практически не влияет на E_{zp} для Xe.

4. Заключение

В работе [19] было проведено исследование на сходимость результата в зависимости от числа точек Чади–Коэна при p=0. При температурах 20 К и выше достаточно 10 точек для получения трех значащих цифр. При использовании 408 точек с такой же точностью можно получить C_V и $\langle u^2 \rangle$ при 2 К. Машинный расчет $\langle u^2 \rangle$ и $C_V(T)$ проведен при постепенном увеличении числа точек разбиений от 2 до 408. При этом оказывается, что результат сходится тем быстрее, чем выше температура.

Таблица 4 Характеристики нулевых колебаний КИГ при p=0

КИГ	$E_{zp}^{(1)}$, K	$E_{zp}^{(2)}$, K	E_{zp}^{theor} , K	E_{zp}^{exp} , K	δ_1^{theor} ,	δ_1^{exp} , %	δ_2^{theor} ,	δ_2^{exp} , %
Ne	81.5	79.6	79.2	$78.5^{[35]}$	2.8	3.7	0.5	1.4
Ar	98.2	96.2	91.4	86.1 ^[36]	6.9	12.3	4.9	10.5
Kr	74.2	72.5	72.6	67.4 ^[36]	2.2	9.2	0.1	7
Xe	64.1	62.7	62.9	_	1.9	_	0.3	_

Примечание.
$$\delta = \frac{\left|E_{zp}^{\rm exp} - E_{zp}^{\rm theor}\right|}{E_{zp}^{\rm exp}}$$
 100 % . $E_{zp}^{(1)}$, $E_{zp}^{(2)}$ — энергия нулевых колебаний,

рассчитанная соответственно по одной точке [31] и по двум точкам [30]. Параметры для расчета $E_{zp}^{(1,2)}$ взяты из [19], модель выбрана М2а. Значения для E_{zp}^{theor} взяты из [19, табл. 2].

Рис. Энергия нулевых колебаний E_{zp} КИГ в зависимости от сжатия $\Delta V/V_0$, рассчитанная в моделях без учета (модель М3 — сплошная линия) и с учетом (модель М3а — штриховая линия) электрон-фононного взаимодействия: \blacksquare – Ne, \bullet – Ar, \blacktriangle – Kr, \bullet – Xe

Из табл. 3 и 4 видно, что если расчет $E_{zp}^{(2)}$ по двум т. **k** существенно улучшает согласие теории и эксперимента, то увеличение числа точек главного значения до 10 не имеет такого значения и исследования термодинамических свойств и нулевых колебаний можно проводить в двухточечной схеме интегрирования в широком интервале давлений. Следует отметить, что E_{zp} для Ar больше, чем в Ne. Это не означает, что квантовые эффекты в Аг больше, чем для Ne. В работах [20,37] был исследован вклад нулевых колебаний в энергии связи E_{coh} , частоты и модули упругости. Нулевые колебания играют существенную количественную роль в формировании свойств лишь Ne. При этом более всего они влияют на энергию связи и упругие постоянные B_{33} и B_{11} . В Ar нулевые колебания не столь значительны, но их вклад в энергию связи и упругую постоянную B_{33} следует учитывать.

Свойства Kr и Xe при T=0 почти целиком определяются статической решеткой. Заметим, что относительная малость величины B_{44}^{zp} для всего ряда кристаллов — следствие сильной компенсации положительного вклада четверных ангармонизмов отрицательным вкладом тройных (см. [32]).

К сожалению, в настоящее время пока мало экспериментальных и теоретических данных по динамике решетки КИГ при высоких давлениях. Как отмечалось во введении, первопринципные расчеты проводились в рамках DFT в приближении LDA [8–12]. Авторы работы [12] предполагают, что увеличение плотности заряда в результате сжатия приведет к улучшению приближения LDA, хотя известно, что LDA плохо описывает системы, связанные такими слабыми силами, как силы Ван-дер-Ваальса [38]. В работе [12] авторы «report on the first *ab initio* investigation of the lattice dynamics of fcc Xe. Not only is such an investigation useful for obtaining thermodynamic properties of xenon *per se*, but also serves to gauge the performance of density-functional and pseudopotential techniques for this class of materials» 1 . Найдено,

23

¹...«представляют впервые *ab initio* исследования динамики решетки ГЦК-Хе. Не только как исследование, полезное для получения термодинамических свойств ксенона самого по себе, но также оно служит, чтобы проверить пригодность техники функционала плотности и псевдопотенциала для этого класса материалов».

что для Хе в ГЦК-фазе все фононные моды монотонно растут с повышением давления до 100 GPa, выше которого поперечные акустические моды в тт. X и L начинают размягчаться ($\hbar\omega_T(X) = 21.3$; 20.9; 19.0 meV и $\hbar\omega_T(L) = 13.1$; 13.1; 13.0 meV при p = 100; 110; 120 GPa соответственно).

Значения частот примерно такие же, как у нас (в модели М3а $\hbar\omega_T(X)$ = 23.2 meV и $\hbar\omega_T(L)$ = 14.1 meV при p = 128 GPa, в модели М3 $\hbar\omega_T(X)$ = 22.12 meV, $\hbar\omega_T(L)$ = 11.04 meV (см. табл. 5 в [25]). Однако мы показали, что в тт. X и L «размягчаются» продольные моды, а в поперечные моды электрон-фононное взаимодействие вносит положительный вклад. Можно легко определить знак вклада электрон-фононного взаимодействия $(\Omega_{\lambda}^2)^*$ в Ω_{λ}^2 в т. X для продольной и поперечной мод. Из выражений (5), (6) в [20] для направления $\mathbf{k} \parallel [\xi 00]$ имеем:

для продольной моды

$$\left(\Omega_L^2\right)^* = -\frac{(2h+2g)^2}{A^{-1} - \phi_{xx}} (1 - \cos k_x)^2, \tag{12}$$

для поперечной моды

$$\left(\Omega_T^2\right)^* = -\frac{\left(2h+g\right)^2}{A^{-1} - \varphi_{yy}} \left(1 - \cos k_x\right)^2. \tag{13}$$

При p > 20 GPa для всех КИГ поляризуемость A > 1.0, и знак вклада определяется знаком $\varphi_{\alpha\beta}$. Как видно из табл. 2 в [25], для т. X в кристаллах с ГЦК-структурой $\varphi_{xx} < 0$, $\varphi_{yy} > 0$ и $\left| \varphi_{\alpha\beta} \right| > A^{-1}$, поэтому $(\Omega_{\lambda}^2)^* < 0$, $(\Omega_T^2)^* > 0$ в т. X. Аналогично $(\Omega_{\lambda}^2)^* < 0$, $(\Omega_T^2)^* > 0$ в т. X.

Представляется более понятным увеличение неадиабатических эффектов при взаимодействии электронов с ветвями фононов, имеющих относительно большую величину, т.е. L-мода во всех симметричных направлениях и T_2 -мода в направлении Σ , там, где $\hbar\omega_{T_2} > \hbar\omega_L$. Об этом свидетельствует и тот факт, что в ряду Ne–Xe относительный вклад электрон-фононного взаимодействия γ самый большой для Ar (см. рис. 2 в [25]). Например, в т. X (L-мода) при сжатии $\Delta V/V_0 = 0.7$ $\gamma = 38.8$; 57; 24.9 и 5.5% для Ne, Ar, Kr и Xe соответственно (см. табл. 5 в [25]). На наш взгляд, недостаток [12] в том, что эта теория не объясняет механизма и величины «размягчения» фононных частот, как это позволяют сделать предложенные нами расчеты на основе теории К.Б. Толпыго [20–25].

- 1. R.J. Hemley, H.-K. Mao, Ashcroff. Phys. Today 51, 26 (1998).
- 2. M. Krisch, J. Raman Spectrosc. 34, 628 (2003).
- 3. A. Dewaele, J.H. Eggert, P. Loubeyre, R. Le Toullec, Phys. Rev. **B67**, 094112 (2003).
- 4. H. Shimizu, H. Tashiro, T. Kume, S. Sasaki, Phys. Rev. Lett. 86, 4568 (2001).

- 5. H. Shimizu, H. Imaeda, T. Kume, S. Sasaki, Phys. Rev. **B71**, 014108 (2005).
- 6. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).
- 7. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965).
- 8. T. Tsuchiya, K. Kawamura, J. Chem. Phys. 117, 5859 (2002).
- 9. I. Kwon, L.A. Collins, J.D. Kress, N. Troullier, Phys. Rev. **B52**, 15165 (1995).
- 10. W.A. Caldwell, J.H. Nguyen, B.G. Pfrommer, F. Mauri, S.G. Louie, R. Jeanloz, Science 277, 930 (1997).
- 11. M. Springbord, J. Phys.: Condens. Matter 12, 9869 (2000).
- 12. J.K. Dewhurst, R. Ahuja, S. Li, B. Johansson, Phys. Rev. Lett. 88, 075504 (2002).
- 13. К.Б. Толпыго, Е.П. Троицкая, ФТТ 13, 1135 (1971).
- 14. М.А. Белоголовский, К.Б. Толпыго, Е.П. Троицкая, ФТТ 13, 2109 (1971).
- 15. К.Б. Толпыго, Е.П. Троицкая, ФТТ 17, 102 (1975).
- 16. К.Б. Толпыго, Е.П. Троицкая, ФТТ 16, 795 (1974).
- 17. К.Б. Толпыго, Е.П. Троицкая, УФЖ 19, 428 (1974).
- 18. К.Б. Толпыго, Е.П. Троицкая, ФТТ 14, 2867 (1972).
- 19. Е.В. Зароченцев, К.Б. Толпыго, Е.П. Троицкая, ФНТ 5, 1324 (1979).
- 20. Е.В. Зароченцев, Е.П. Троицкая, В.В. Чабаненко, ФТВД 13, № 4, 7 (2003).
- 21. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТВД 14, № 3, 7 (2004).
- 22. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТВД 15, № 3, 7 (2005).
- 23. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТТ 47, 1683 (2005).
- 24. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТТ 48, 695 (2006).
- 25. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТВД 16, № 1, 25 (2006).
- 26. В.Л. Дорман, Е.В. Зароченцев, Е.П. Троицкая, ФТТ 23, 1581 (1981).
- 27. Е.П. Троицкая, Ю.В. Еремейченкова, Е.В. Зароченцев, ФТВД 5, № 4, 5, (1995).
- 28. В.Л. Дорман, Е.В. Зароченцев, Е.П. Троицкая, ФНТ 8, 94 (1982).
- 29. A. Baldereschi, Phys. Rev. B7, 5212 (1973).
- 30. D.J. Chadi, M.L. Cohen, Phys. Rev. B8, 5747 (1973).
- 31. A. Baldereschi, Bull. Am. Phys. Soc. 17, 237 (1972).
- 32. В.Г. Барьяхтар, Е.В. Зароченцев, Е.П. Троицкая, в кн.: Методы вычислительной физики в теории твердого тела. Атомные свойства металлов, Наукова думка, Киев (1990).
- 33. Е.В. Зароченцев, Е.П. Троицкая, В.В. Чабаненко, ФТВД 11, № 4, 7 (2001).
- 34. A.P. Jephcoat, H.K. Mao, L.W. Finger, D.F. Lox, R.J. Hemley, C.S. Zha, Phys. Rev. Lett. **59**, 2690 (1987).
- 35. W.B. Daniels, J.D. Axe, Phys. Rev. B14, 3649 (1976).
- 36. R.H. Beaumont, H. Chihara, J.A Morrison, Proc. Phys. Soc. 78, 1462 (1961).
- 37. Е.В. Зароченцев, Е.П. Троицкая, В.В. Чабаненко, ФТВД 12, № 2, 13 (2002).
- 38. W. Kohn, Y. Meir, D.E. Makarov, Phys. Rev. Lett. 80, 4153 (1998).

E.P. Troitskaya, V.V. Chabanenko, E.E. Gorbenko, N.V. Kuzovoy

ZERO-POINT ENERGY IN COMPRESSED CRYSTALS OF THE Ne-Xe SERIES

Within the K.B. Tolpygo's model and by using a dynamic matrix constructed on the basis of nonempirical short-range repulsion potential the calculation was made of the phonon

frequencies of compressed inert gas crystals (IGC) with the electron-phonon interaction at points of Chadi–Cohen principal value taken into account. Method of integration by points of the principal value is discussed. Imaginary frequency of the fcc lattice is analysed. Quantum effects, in particular the zero-point energy E_{zp} , have been investigated in Ne–Xe crystals at various pressure values.

Fig. Zero-point energy E_{zp} of IGC as a function of compression $\Delta V/V_0$ calculated within models with no account (model M3 – solid line) and with account (model M3a – dashed line) for electron-phonon interaction: \blacksquare – Ne, \bullet – Ar, \blacktriangle – Kr, \bullet – Xe