PACS: 72.15.Eb

Ю.И. Тягур

ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ $Sn_2P_2S_6$ ПРИ ИЗМЕНЕНИИ УРОВНЯ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ

Ужгородский национальный университет ул. Пидгирна, 46, г. Ужгород, 88000, Украина E-mail: tyagur@mail.uzhgorod.ua

Проведен анализ соотношений Эренфеста, Клапейрона—Клаузиуса, теплоемкости, температурного коэффициента линейного расширения вдоль фазовой p—T-диаграммы $Sn_2P_2S_6$. Установлено, что эти зависимости имеют аномалии вблизи давлений $p_1=(0.04\pm0.03)$ GPa и $p_2=(0.20\pm0.03)$ GPa на фазовой p–T-диаграмме $Sn_2P_2S_6$.

Монокристаллы $Sn_2P_2S_6$ являются одноосными, собственными фотосегнетополупроводниковыми кристаллами группы $A_2^{\ IV}B_2^{\ V}C_6^{\ VI}$. При температуре $T_0=336-339$ К (температура Кюри) и атмосферном давлении в $Sn_2P_2S_6$ происходит сегнетоэлектрический фазовый переход (СЭФП) второго рода с изменением симметрии ($P_C \leftrightarrow P2_{1/C}$). Фазовая p-T-диаграмма $Sn_2P_2S_6$ исследовалась в работах [1–6]. Было установлено, что температура T_{0C} (СЭФП) уменьшается с ростом давления согласно соотношению

$$T_{0C} = (336.1 \pm 0.5)(1 - p/1.25)^{0.82}. (1)$$

При увеличении давления вблизи $p = (0.04 \pm 0.03)$ GPa изменяется род ФП со второго на первый, а затем вблизи $p = (0.2 \pm 0.03)$ GPa имеет место расщепление линии СЭФП с образованием несоразмерной фазы.

Известно, что в основу термодинамической теории фазовых переходов положено понятие термодинамического потенциала $\Phi = \Phi(p,T,E,P)$. Вблизи температуры T_0 СЭФП термодинамический потенциал можно разложить в ряд по степеням поляризации P_s :

$$\Phi = \Phi_0(p, T, E) + \frac{1}{2}\alpha P_s^2 + \frac{1}{4}\beta P_s^4 + \frac{1}{6}\gamma P_s^6,$$
 (2)

где $\Phi_0(p,T,E)$ — термодинамический потенциал параэлектрической фазы, в которой поляризация кристалла равна нулю; α , β , γ — коэффициенты термо-

динамического потенциала (2). Коэффициент α можно разложить в ряд по температуре и ограничиться первым членом ряда:

$$\alpha(T) = \alpha_0 \left(T - T_0 \right), \tag{3}$$

где $\alpha_0 = \frac{1}{C_{W,p} \varepsilon_0}$ — температурная константа, $C_{W,p}$ — постоянная Кюри—Вейса

в параэлектрической фазе, $\epsilon_0 = 8.85 \cdot 10^{-12} \ [\text{F/m}]$ – постоянная величина вакуума.

Для ФП второго рода температурная зависимость квадрата спонтанной поляризации $P_s^2(T)$ описывается линейным уравнением вида

$$P_s^2 = \frac{\alpha_0}{\beta} T_0 - \frac{\alpha_0}{\beta} T \,. \tag{4}$$

Коэффициенты уравнения (4) были получены аппроксимацией экспериментальных зависимостей поляризации от температуры при атмосферном давлении и они равны [7]:

$$\left(\frac{\alpha_0}{\beta}T_0\right) = (0.344 \pm 0.003) \text{ и}\left(\frac{\alpha_0}{\beta}\right) = (102 \pm 1) \cdot 10^{-5}.$$
 (5)

Найденная температура $\Phi\Pi$ T_0 = 337.2 K (5). Для $\Phi\Pi$ второго рода в точке T_0 имеет место конечный скачок теплоемкости ΔC_p , который определяется уравнением

$$\Delta C_p = -\frac{\alpha_0}{2} T_0 \frac{dP_s^2}{dT} = \frac{\alpha_0^2}{2\beta} T_0.$$
 (6)

Константа Кюри–Вейса определяется из температурных исследований диэлектрической проницаемости и при атмосферном давлении равна $C_{W,p}$ = 78616 K [6]. Найденный коэффициент $\alpha_0 = 1.44 \cdot 10^6 \text{ [m/F·K]}$.

Используя величины T_0 , α_0 и $(-\alpha_0/\beta)$, определяем скачок теплоемкости ΔC_n для $\mathrm{Sn_2P_2S_6}$ при атмосферном давлении, который равен

$$\Delta C_p = -\frac{14.4 \cdot 10^5}{2} \left[\frac{\text{m}}{\text{F} \cdot \text{K}} \right] \times 337.2 \text{ [K]} \times (-102 \cdot 10^{-5}) \left[\frac{\text{C}^2}{\text{m}^4 \cdot \text{K}} \right] = 247640 \left[\frac{\text{J}}{\text{m}^3 \cdot \text{K}} \right] = 69.6 \left[\frac{\text{J}}{\text{kg} \cdot \text{K}} \right] = 34.2 \left[\frac{\text{J}}{\text{mol} \cdot \text{K}} \right] = 16.6 \left[\frac{\text{cal}}{\text{kg} \cdot \text{K}} \right] = 8.2 \left[\frac{\text{cal}}{\text{mol} \cdot \text{K}} \right].$$
(7)

Полученное значение $\Delta C_p = 8.2 \left[\frac{\text{cal}}{\text{mol} \cdot \text{K}} \right]$ хорошо согласуется с литературными данными [8].

Из уравнения (6) видно, что зависимость скачка теплоемкости от давления может быть представлена соотношением

$$\Delta C_p(p) = \frac{T_0(p)}{2\varepsilon_0^2 C_{W,p}^2(p)\beta(p)},\tag{8}$$

где $T_0(p)$, $C_{W,p}(p)$, $\beta(p)$ — зависимости температуры $\Phi\Pi$, константы Кюри—Вейса, коэффициента термодинамического потенциала от давления. Зависимости $T_0(p)$ и $C_{W,p}(p)$ для $\mathrm{Sn_2P_2S_6}$ получены из экспериментальных температурных зависимостей диэлектрической проницаемости в режиме нагревания и охлаждения при различных фиксированных высоких давлениях [2,3].

В связи с этим преобразуем уравнение (9) к виду

$$\Delta C_p(p)\beta(p) = \frac{1}{2\varepsilon_0^2} \frac{T_0(p)}{C_{W,p}^2(p)} = (63.8 \cdot 10^{20}) \frac{T_0(p)}{C_{W,p}^2(p)}.$$
 (9)

При атмосферном давлении величина

$$\Delta C_p(p)\beta(p) = 63.8 \cdot 10^{20} \frac{337.2}{6180.5 \cdot 10^6} = 3.48 \cdot 10^{14} \left[\frac{\text{m}^2 \cdot \text{V}^2}{\text{C}^2 \cdot \text{K}} \right]. \tag{10}$$

Используя соотношение (9), находим зависимости произведения $\Delta C_p(p)\beta(p)$ от давления. Рассчитаем зависимость A(p) барического коэффициента относительного изменения величины $\Delta C_p(p)\beta(p)$ от давления, которая имеет вид

$$A(p) = \frac{1}{\Delta C_p(p)\beta(p)} \frac{d\left[\Delta C_p(p)\beta(p)\right]}{dp}.$$
 (11)

Результаты изображены на рис. 1, из которого видно, что зависимость A(p) имеет четко выраженные аномалии вдоль p-T-диаграммы. Первая реализуется при давлении $p_1 \approx 0.1$ GPa, а вторая — при $p_2 \approx 0.2$ GPa. Аномалия при p_1 связана с реализацией трикритической точки на p-T-диаграмме $\mathrm{Sn_2P_2S_6}$, а при p_2 — с реализацией точки расщепления линии фазовых переходов [2,3].

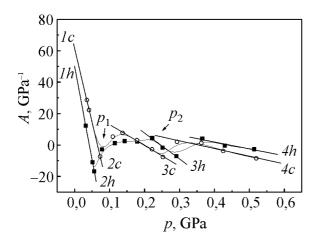


Рис. 1. Зависимость коэффициента A от давления p для $Sn_2P_2S_6$ в режимах охлаждения ($-\circ$ -) и нагревания ($-\bullet$ -): $2c-Y=(61\pm1)-(939\pm16)X$, 2h-Y=50-1192X; $3c-Y=(26\pm1)-(133\pm7)X$, $3h-Y=(40\pm5)-(165\pm20)X$; $4c-Y=(17\pm4)-(49\pm9)X$, $4h-Y=(20\pm5)-(44\pm11)X$

Вдоль фазовой *p*–*T*-диаграммы проведен анализ соотношения Эренфеста:

$$\frac{1}{T_0(p)} \frac{dT_0(p)}{dp} = \frac{(L^+ - L^-)}{(C_p^+ - C_p^-)\rho},$$
(12)

где L – температурный коэффициент линейного расширения, C_p – теплоем-кость, ρ – плотность. Результаты расчета изображены на рис. 2, из которого видно, что вблизи давлений p_1 и p_2 имеют место аномалии.

Найдена зависимость $\Delta L(p) = (L^+ - L^-)$, которая имеет вид

$$\Delta L(p) = \frac{1}{T_0(p)} \frac{dT_0(p)}{dp} [(C_p^+ - C_p^-)\rho].$$
 (13)

Результаты расчета представлены на рис. 3. Видно, что зависимость $\Delta L(p)$ вблизи p_1 имеет минимум, а вблизи p_2 – излом.

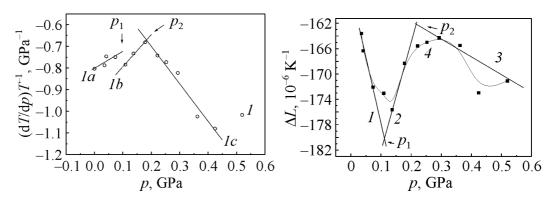


Рис. 2. Зависимость коэффициента $\frac{1}{T_0(p)} \frac{dT_0(p)}{dp}$ от давления для $\operatorname{Sn_2P_2S_6}$ в режи-

ме охлаждения: $Ia - Y = -(0.80 \pm 0.02) + (0.78 \pm 0.37)X$, $Ib - Y = -(0.94 \pm 0.02) + (1.48 \pm 0.15)X$, $Ic - Y = -(0.35 \pm 0.05) - (1.73 \pm 0.16)X$; $p_1 = 0.09$ GPa, $p_2 = 0.183$ GPa

Рис. 3. Зависимость $\Delta L(p)$ для $\operatorname{Sn_2P_2S_6}$: $I - Y = (-156974 \pm 1927) - (208140 \pm 36676)X$

Для $\Phi\Pi$ первого рода вдоль фазовой p–T-диаграммы проведен анализ соотношения Клапейрона–Клаузиуса:

$$\frac{\mathrm{d}T_{0C}(p)}{\mathrm{d}p} = \frac{\Delta V(p)}{\Delta S(p)} = \frac{\Delta V(p)T_{0C}(p)}{\lambda(p)m},\tag{14}$$

где $\Delta V(p)$, $\Delta S(p)$, $\lambda(p)$ — зависимости скачка объема, энтропии, удельной скрытой теплоты $\Phi\Pi$ от давления. Вблизи p_1 и p_2 также существуют аномалии.

По-видимому, обнаруженные аномалии на p-T-диаграмме $Sn_2P_2S_6$ свидетельствуют о существовании трикритической точки и точки расщепления линии сегнетоэлектрических фазовых переходов [2,3].

Физика и техника высоких давлений 2007, том 167 № 1

- 1. *Е.И. Герзанич, А.П. Бутурлакин, Ю.И. Тягур, М.И. Гурзан*, УФЖ **25**, 897 (1980).
- 2. Ю.И. Тягур, Е.И. Герзанич, Кристаллография 29, 957 (1984).
- 3. Yu.I. Tyagur, J. Jun, Ferroelectrics 192, 187 (1997).
- 4. Yu.I. Tyagur, Ferroelectrics 211, 299 (1998).
- 5. Yu. Tyagur, L. Burianova, I. Tyagur, A. Kopal, P. Hana, Ferroelectrics 300, 165 (2004).
- 6. Yu. Tyagur, I. Tyagur, A. Kopal, L. Burianova, P. Hana, Ferroelectrics **320**, 35 (2005).
- 7. Yu. Tyagur, Ferroelectrics **345**, 1 (2006).
- 8. Keiichi Moriya, Hideaki Kuniyoshi, Kohji Tashita, Yoshitada Ozaki, Shinichi Yano, Takasuke Matsuo, J. Phys. Soc. Jpn. **67**, 3505 (1998).

Yu.I. Tyagur

PHYSICAL PROPERTIES OF $Sn_2P_2S_6$ CRYSTALS ALONG THE p-T DIAGRAM

The Ehrenfest, Clapeyron–Clausius relationships, heat capacity, temperature coefficient of linear expansion along the p-T phase diagram of $\operatorname{Sn_2P_2S_6}$ have been analysed. It has been determined that on the diagram, the dependences have anomalies near $p_1 = (0.04 \pm 0.03)$ GPa and $p_2 = (0.20 \pm 0.03)$ GPa.

Fig. 1. Dependence of coefficient *A* on pressure *p* for Sn₂P₂S₆ under cooling ($-\circ-$) and heating ($-\blacksquare-$): $2c-Y=(61\pm1)-(939\pm16)X$, 2h-Y=50-1192X; $3c-Y=(26\pm1)-(133\pm7)X$, $3h-Y=(40\pm5)-(165\pm20)X$; $4c-Y=(17\pm4)-(49\pm9)X$, $4h-Y=(20\pm5)-(44\pm11)X$

Fig. 2. Dependence of coefficient $\frac{1}{T_0(p)} \frac{dT_0(p)}{dp}$ on pressure for Sn₂P₂S₆ under cooling:

$$Ia - Y = -(0.80 \pm 0.02) + (0.78 \pm 0.37)X$$
, $Ib - Y = -(0.94 \pm 0.02) + (1.48 \pm 0.15)X$, $Ic - Y = -(0.35 \pm 0.05) - (1.73 \pm 0.16)X$; $p_1 = 0.09$ GPa, $p_2 = 0.183$ GPa

Fig. 3. Dependence $\Delta L(p)$ for Sn₂P₂S₆: $I - Y = (-156974 \pm 1927) - (208140 \pm 36676)X$