PACS: 72.20.-i

Р.К. Арсланов 1 , М.М. Гаджиалиев 1 , М.И. Даунов 1 , Е.В. Кортунова 2 , П.П. Хохлачев 1 , П.П. Шванский 2

ЭЛЕКТРОННЫЙ ТРАНСПОРТ МОНОКРИСТАЛЛИЧЕСКОГО ЦИНКИТА ПРИ НОРМАЛЬНОМ И ВЫСОКОМ ДАВЛЕНИИ

¹Институт физики Дагестанского научного центра РАН ул. Ярагского, 94, г. Махачкала, 367003, Россия E-mail: fvd@xtreem.ru

На объемных монокристаллических образцах n-ZnO, выращенных гидротермальным методом, c концентрацией электронов 10^{13} – 10^{17} cm⁻³ измерены электропроводность σ и коэффициент Холла R_H при атмосферном давлении e интервале температур 77–400 e0 e1 гидростатическом давлении до e2 e3 e4 при 300 e6. Установлено, что характер кинетических свойств оксида цинка определяется мелким водородоподобным донором, энергия ионизации которого e4 e6.0052 – 2.76·e10 e8 e8.

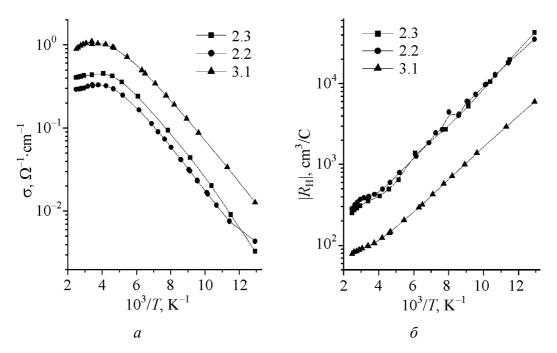
1. Введение

Наметившийся в последние годы прогресс в росте кристаллов ZnO и их уникальные физические характеристики (высокое значение коэффициента электромеханической связи, большая ширина запрещенной зоны, люминесцентные свойства, радиационная стойкость и др.) [1] делают актуальным исследования электронного спектра и транспорта в этом соединении. Тем не менее данных о кинетических явлениях, полученных на объемных кристаллах, недостаточно. Следует отметить противоречивость приводимых в литературе величин зонных параметров [1–3]. В частности, значение эффективной массы электронов варьирует от $0.06m_0$ до $0.5m_0$, барический коэффициент ширины запрещенной зоны dE_g/dP — от 6 до 20 meV.

2. Экспериментальные результаты и их обсуждение

В интервале температур 77–400 K на объемных кристаллах n-ZnO c концентрацией примесей 10^{17} – 10^{18} cm $^{-3}$ измерены кинетические коэффициенты: электропроводность σ и коэффициент Холла $R_{\rm H}$ при атмосферном и гид-

²Всесоюзный научно-исследовательский институт синтеза минерального сырья г. Александров, Владимирская обл.


ростатическом (до P=7 GPa) давлениях. Методика и техника эксперимента описаны в [4]. Монокристаллы выращены гидротермальным методом [1] в концентрированных растворах щелочей на моноэдрических затравках при температурах кристаллизации 330–350°C, давлении 30–50 MPa и прямом перепаде температур 6–20 градусов между камерами роста и растворения автоклава. Длительность цикла выращивания кристаллов 130–150 d.

Основные характеристики некоторых образцов цинкита приведены в таблице. Результаты эксперимента представлены на рис. 1, 2.

Таблица Коэффициент Холла, холловская подвижность и характеристические параметры образцов n-ZnO

Образцы	$ R_{\rm H} $, cm ³ /C		$\mu_{\rm H}$, cm ² ·V ⁻¹ ·s ⁻¹		N_d ,	N_a ,	F. maV
	77.4 K	300 K	77.4 K	300 K	10^{-18} cm^{-3}	10^{-18} cm^{-3}	E_d , meV
2.3	42800	350	142	150	0.20	0.164	35.7
2.2	35400	395	155	130	0.27	0.24	30.8
3.1	5994	91	77	105	0.79	0.59	26.4

Известно [1], что характер кинетических свойств оксида цинка определяется мелким водородоподобным донором, уровень энергии которого расположен под дном зоны проводимости на расстоянии $E_d \approx 50$ meV при нормальном давлении [1].

Рис. 1. Температурная зависимость электропроводности (a) и коэффициента Холла (δ) образцов ZnO при атмосферном давлении

Рис. 2. Зависимости нормализованного удельного сопротивления ρ/ρ_0 (•), коэффициента Холла R_H/R_{H_0} (∇) и холловской подвижности μ_H/μ_{H_0} (\blacksquare) от давления при $T=300~{\rm K}$ образца ZnO с $R_H=-25~{\rm cm}^3/{\rm C}$, $\rho=0.16~\Omega\cdot{\rm cm}$ и $\mu_H=156~{\rm cm}^2/{\rm V}\cdot{\rm s}$

Температурная зависимость холловской подвижности $\mu_H(T)$ в интервалах температур 77–120 и 250–400 К указывает на то, что в первом интервале доминирует рассеяние электронов на ионах примеси, а во втором — на колебаниях решетки.

По температурной зависимости коэффициента Холла (рис. $1,\delta$) и уравнению электронейтральности

$$n + N_a = N_d [1 + \beta^{-1} \exp(\varepsilon_d + \eta)]^{-1}$$
 (1)

определены энергия ионизации донорного примесного центра $E_d = (0.052 - 2.76 \cdot 10^{-8} N_d^{1/3})$ eV и концентрации доноров N_d и компенсирующих акцепторов N_a (таблица). Здесь $\varepsilon_d = E_d/k_0T$ и $\eta = E_F/k_0T$ — приведенные энергии донорного центра Ферми, k_0 — постоянная Больцмана.

Всестороннее давление вследствие сокращения расстояния между примесными центрами и соответственно возрастания их концентрации N_i – объемно-концентрационный эффект [5] – способствует «металлизации» полупроводников. Однако в полупроводниках значительно сильнее изменяется эффективный боровский радиус. На рис. 2 приведены барические зависимости коэффициента Холла, удельного сопротивления и холловской подвижности монокристаллического n-ZnO с $R_{\rm H} = -25~{\rm cm}^3/{\rm C}$, $\rho = 0.16~{\rm \Omega}\cdot{\rm cm}$ и $\mu_{\rm H} = 156~{\rm cm}^2/{\rm V}\cdot{\rm s}$ при $T=300~{\rm K}$.

По зависимости $R_{\rm H}(P)$, носящей экспоненциальный характер, выяснено, что этот уровень удаляется от дна зоны проводимости со скоростью $\partial E_d/\partial P=$ = 5 meV/GPa. Далее по соотношениям (1)–(5) и по известным значениям [3] $E_g(P=0)=3.25$ eV, $\partial E_g/\partial P=0.02$ eV/GPa, B=500 GPa получено $(\partial \chi/\partial P)\chi^{-1}=$ = -0.029.

$$E_d = (0.052 + 0.005P) \text{ eV/GPa},$$
 (2)

$$m = m(P = 0)[1 + \Delta E_g/E_g],$$
 (3)

$$\left(\partial E_d/\partial P\right)E_d^{-1} = -2\left(\partial \chi/\partial P\right)\chi^{-1} + \left(\partial m/\partial P\right)m^{-1},\tag{4}$$

$$N_i = N_i(P = 0)(1 + PB^{-1}),$$
 (5)

здесь P — всестороннее давление, m — эффективная масса электронов, χ — диэлектрическая постоянная, B — объемный модуль.

Таким образом, при возрастании давления от нормального до P=1 GPa боровский радиус убывает на 6.6%, в то время как среднее расстояние между примесными центрами сокращается менее чем на 0.1% (объемно-концентрационный эффект [5]), т.е. имеет место выраженная тенденция к локализации электронов на мелких донорах с ростом давления.

Данный эффект особенно сильно проявляется в алмазоподобных прямозонных с кейновским законом дисперсии узкозонных полупроводниках n-типа III—V InSb, InAs и II—IV—V $_2$ CdSnAs $_2$, CdGeAs $_2$. В этих полупроводниках с учетом полученной экспериментально барической зависимости диэлектрической проницаемости $\chi(P)$ [6]:

$$a_B = a_{B_0} \left\{ \left[1 + \left(d\varepsilon_g / dP \right) P / \varepsilon_{g_0} \right] \left(1 + \Theta P / \varepsilon_{g_0} \right) \right\}^{-1}.$$
 (6)

Здесь $\Theta=0.025$ eV/GPa, значок «0» соответствует атмосферному давлению. Согласно (6) в n-InSb, например, при увеличении давления до 1 GPa a_B убывает в 1.9 раза, пороговая величина концентрации доноров $N_i^{(M)}$ перехода металл—диэлектрик (переход Мотта) возрастает в 7 раз, а энергия основного состояния донора — более чем в 2 раза. При определенном уровне легирования и компенсации вследствие эффекта барического «вымораживания» (аналог магнитного «вымораживания») носителей заряда на примесные центры могут наблюдаться фазовый переход металл—диэлектрик и переход от состояния сильного легирования к состоянию слабого легирования.

3. Заключение

Выяснено на примере цинкита, что воздействие всестороннего давления, несмотря на сближение примесных центров, приводит к локализации электронов в прямозонных полупроводниках, т.е. наблюдается специфический эффект барического «вымораживания» электронов (аналог магнитного «вымораживания»). Тенденция к локализации электронов с увеличением давления должна быть существеннее в узкозонных прямозонных с Кейновским законом дисперсии полупроводниках из-за возрастания эффективной массы электронов.

Значительно меньшая величина коэффициента давления донорного уровня ZnO (5 meV/GPa) в сравнении с барическим коэффициентом ширины запрещенной зоны (20 meV/GPa [3]) означает, что этот примесный центр является мелким водородоподобным донором [7,8].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 02-02-17888).

- 1. И.П. Кузьмина, В.А. Никитенко, Окись цинка, Наука, Москва (1984).
- 2. *Физико-химические* свойства полупроводниковых веществ. Справочник, Наука, Москва (1979).

Физика и техника высоких давлений 2005, том 15, № 2

- 3. П.Ю.М. Кардона, Основы физики полупроводников, Физматлит, Москва (2002).
- 4. *А.Ю. Моллаев, Р.К. Арсланов, М.И. Даунов, Л.А. Сайпулаева*, ФТВД **13**, № 1, 29 (2003).
- 5. *М.И. Даунов, А.Б. Магомедов, А.Э. Рамазанова*, ФТП **19**, 936 (1985).
- 6. *М.И. Даунов, А.Б. Магомедов, А.Э. Рамазанова*, Изв. вузов, Физика **29**, № 8, 98 (1986).
- 7. М.И. Даунов, И.К. Камилов, С.Ф. Габибов, ФТП **35**, 59 (2001).
- 8. M.I. Daunov, I.K. Kamilov, S.F. Gabibov, R.Rh. Akchurin, Phys. Status Solidi **B223**, 529 (2001).

R.K. Arslanov, M.M. Gadjialiev, M.I. Daunov, E.B. Kortunova, P.P. Hohlachev, P.P. Shvansky

ELECTRONIC TRANSPORT MONOCRYSTAL ZnO AT NORMAL AND A HIGH PRESSURE

On bulk crystal samples n-ZnO, grown up by a hydrothermal method, with concentration of electron 10^{13} – 10^{17} cm⁻³ are measured conductivity σ and coefficient of Hall $R_{\rm H}$ at atmospheric pressure an interval of temperatures 77–400 K and hydrostatic pressure up to P=7 GPa under 300 K. It is established, that character of kinetic properties oxide zinc is defined shallow hydrogen-like by the donor energy of ionization that $E_d=(0.052-2.76\cdot10^{-8}N_d^{1/3}+0.005P)~\rm eV$.

Fig. 1. The temperature dependence conductivity (a) and coefficient Hall (δ) of samples ZnO under atmospheric pressure

Fig. 2. Dependeces normalized specific resistance ρ/ρ_0 (•), coefficient Hall R_H/R_{H_0} (∇) and hall mobility μ_H/μ_{H_0} (■) from pressure at T = 300 K of sample ZnO with $R_H = -25$ cm³/C, $\rho = 0.16$ Ω·cm and $\mu_H = 156$ cm²/V·s

На этом завершаем публикацию материалов VIII Международной конференции «Высокие давления – 2004: Фундаментальные и прикладные аспекты».