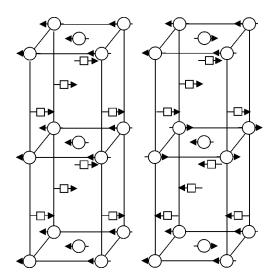
PACS: 71.20.Be, 75.10.Hk

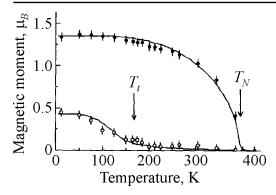
В.И. Вальков, А.В. Головчан, А.В. Росляк

ИЗМЕНЕНИЕ ОБМЕННЫХ ПАРАМЕТРОВ В Cr₂As ПОД ДАВЛЕНИЕМ


Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: golovchan1@yandex.ru

Исследована электронная структура антиферромагнитного (AF) Cr_2As . Обнаружена анизотропия обменного взаимодействия между подрешетками хрома ($J^{\uparrow\uparrow}(Cr_I-Cr_{II})=-6.07\cdot 10^{-3}\ eV,\ J^{\uparrow\downarrow}(Cr_I-Cr_{II})=-4.54\cdot 10^{-3}\ eV)$. Проанализировано поведение обменных интегралов при сжатии решетки.

Ключевые слова: электронная структура, межатомные обменные интегралы, антиферромагнетики


Ввеление

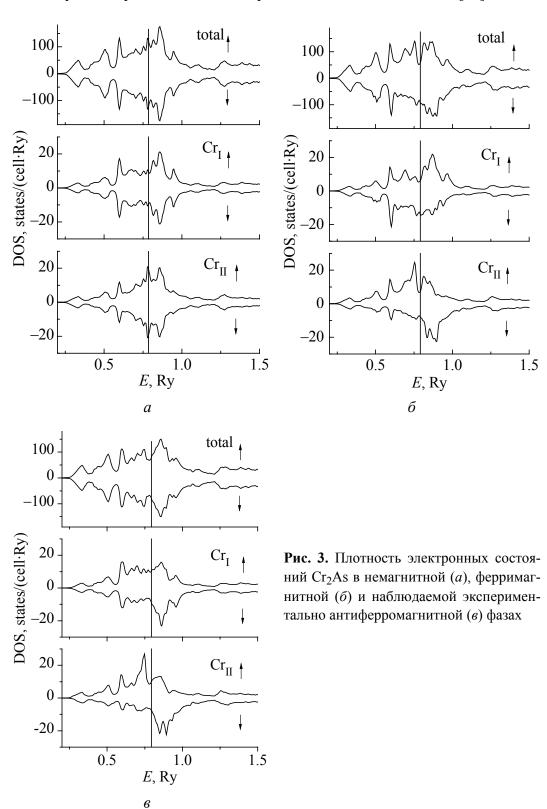
Интерметаллические соединения 3d-металлов с As или Sb, обладающие тетрагональной кристаллической структурой типа $\mathrm{Cu_2Sb}$ (пространственная группа симметрии D_{4h}^{7} – P_{4h} /nmm), привлекают внимание исследователей

Рис. 1. Магнитная структура $Cr_2As: a - FIM$ и $6 - AF: \circ - Cr_I$, $\Box - Cr_{II}$ (атомы As не показаны)

разнообразием магнитных структур. Например, Mn₂Sb является ферримагнетиком [1], a Mn₂As [2], Fe₂As [3] и Cr₂As [4] – антиферромагнетики, различающиеся типом магнитной структуры. В этом ряду антиферромагнетик Cr₂As выделяется двумя аспектами: малыми магнитными моментами атомов $(M(Cr_I) = 0.4\mu_B, M(Cr_{II}) = 1.34\mu_B$ [4]) и своей магнитной структурой (рис. 1,б). Особенность последней состоит в том, что эффективное молекулярное поле между подсистемами Cr_I и Ст взаимокомпенсируется в приближении изотропного обмена. Это должно приводить к некоррелированному упорядочению обеих подсистем,

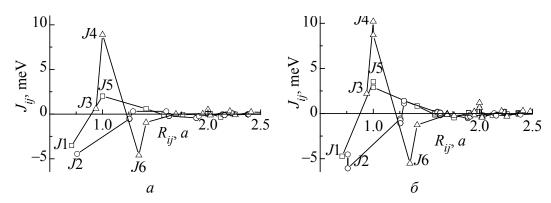
Рис. 2. Зависимость магнитных моментов атомов Cr в $Cr_{2.2}As$ от температуры [6]: $\circ - Cr_{II}$, $\bullet - Cr_{II}$

т.е. к существованию двух температур перехода. Первоначально экспериментальные исследования обнаруживали только одну критическую температуру $T_N = 393$ К [4], из чего делался вывод о значительной величине анизотропного обменного взаимодействия Cr_I — Cr_{II} [5]. Однако позднее в работе [6] была обнаружена вторая критическая температура $T_t = 175$ К (рис. 2), соответствующая упорядочению подсистемы Cr_I . Таким образом, анизотропная часть


обменного взаимодействия Cr_I — Cr_{II} не является определяющей и «эффективно работает» только в области $T_t < T < T_N$, обеспечивая индуцирование малого магнитного момента Cr_I (рис. 2). Исходя из вышеизложенного, представляют интерес *ab initio* расчет и последующий анализ электронной структуры и межатомных обменных интегралов в Cr_2As .

Кристаллическая и электронная структуры Cr₂As

Расчеты электронной структуры и обменных интегралов в Cr_2As выполнены полностью релятивистским методом Корринги–Кона–Ростокера (ККR) (пакет программ SPRKKR [7]). Для кристаллического потенциала использовали приближение атомных сфер. Обменно-корреляционную энергию вычисляли в приближении локальной плотности без учета градиентных поправок [8]. Базовые параметры кристаллической и магнитной структур взяты из эксперимента [4,6]: Cu_2Sb – тетрагональная кристаллическая структура типа C38, группа симметрии D_{4h}^{7} –P4/nmm, a=3.60 Å, c=6.34 Å. Атомы Cr_1 занимают позиции типа 2a(0,0,0), Cr_{II} и As – позиции типа 2c(0,0.5,z) с параметрами $z_{Cr}=0.325$, $z_{As}=0.725$ соответственно.

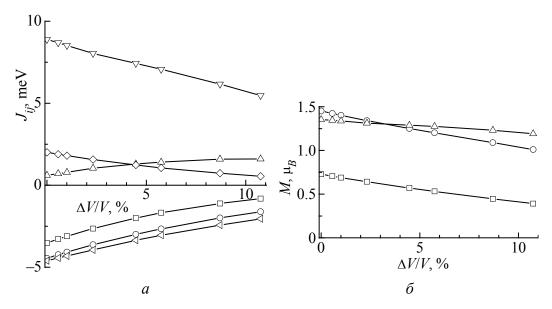

Расчет показал неустойчивость ферромагнитной фазы. Поэтому в качестве исходной точки рассматривали ферримагнитную (FIM) структуру типа Mn₂Sb (см. рис. 1,*a*). Электронная структура Cr₂As приведена на рис. 3. Зона проводимости расположена выше 0.25 Ry и образована преимущественно 3*d*-состояниями Cr и 4*p*-состояниями As, что указывает на сильную *p*-*d*-гибридизацию в данном соединении. В целом электронная структура характерна для пниктидов переходных металлов и согласуется с результатами других авторов [10]. Величины магнитных моментов хрома в ферримагнитной ($M(\text{Cr}_{\text{I}}) = -0.72\mu_B$, $M(\text{Cr}_{\text{II}}) = 1.45\mu_B$) и антиферромагнитной ($M(\text{Cr}_{\text{I}}) = 0.87\mu_B$, $M(\text{Cr}_{\text{II}}) = 1.65\mu_B$) фазах согласуются с экспериментальными данными [4] ($M(\text{Cr}_{\text{I}}) = 0.4\mu_B$, $M(\text{Cr}_{\text{II}}) = 1.34\mu_B$) и результатами расчетов методами LAPW [10] ($M(\text{Cr}_{\text{I}}) = 0.33\mu_B$, $M(\text{Cr}_{\text{II}}) = 1.37\mu_B$) и KKR [11] ($M(\text{Cr}_{\text{I}}) = 0.43\mu_B$,

 $M(Cr_{II}) = 1.75 \mu_B$). Завышенное значение магнитного момента Cr_I связано с используемым приближением для кристаллического потенциала [12].

Межатомные обменные интегралы

Межатомные обменные интегралы рассчитывали по методике [9], основанной на расчете второй производной функционала полной энергии по отклонениям избранной пары спинов от положения равновесия. Их зависимость от межатомного расстояния приведена на рис. 4 для основных FIM- и AF-состояний. Обменное взаимодействие, обеспечивающее связь подрешеток Cr_I и Cr_{II} , составляет $-4.45\cdot10^{-3}$ eV в первой координационной сфере и быстро убывает в последующих (рис. 4,a). Отрицательное обменное взаимодействие между ближайшими атомами Cr_I ($-3.5\cdot10^{-3}$ eV) обеспечивает их «необычную» ориентацию в AF-структуре (в немагнитном кристалле атомы Cr_I симметрийно-тождественны).

Рис. 4. Зависимость межатомного обменного взаимодействия в Cr_2As от расстояния (в единицах постоянной решетки a) в ферримагнитной (a) и антиферромагнитной (δ) структурах: $\Box - Cr_I - Cr_I$, $\circ - Cr_I - Cr_{II}$, $\Delta - Cr_{II} - Cr_{II}$


Основной интерес в Cr_2As представляет взаимосвязь двух подрешеток хрома, которая может быть обеспечена только за счет анизотропного обменного взаимодействия [5,6]. Для оценки его величины нами были рассчитаны межатомные обменные интегралы для основного AF-состояния (рис. $4,\delta$). В этом случае для произвольного Cr_I у одной половины ближайших атомов Cr_{II} магнитные моменты параллельны магнитному моменту выбранного атома, а у второй – антипараллельны. Наблюдаемое различие обменных интегралов $J^{\uparrow\uparrow}(Cr_I-Cr_{II})=-6.07\cdot 10^{-3}$ eV и $J^{\uparrow\downarrow}(Cr_I-Cr_{II})=-4.54\cdot 10^{-3}$ eV подтверждает существование анизотропии обменного взаимодействия Cr_I-Cr_{II} . Однако ее величины недостаточно для обеспечения одновременного перехода подрешеток в магнитоупорядоченное состояние (см. рис. 2). Оценку температур магнитного упорядочения подрешеток хрома проведем по формуле [9]:

$$T_i = \frac{2}{3}J_{0i},$$

справедливой для модели Гейзенберга с классическими спинами. Здесь $J_{0i} = \sum_{j \neq i} J_{ij}$ — эффективное обменное взаимодействие выбранного атома со

всем кристаллом. Эффективные температуры упорядочения составляют $T(Cr_I) = 180 \text{ K}$ и $T(Cr_{II}) = 382 \text{ K}$ против наблюдаемых экспериментально $T(Cr_{II}) = 175 \text{ K}$ и $T(Cr_{II}) = 393 \text{ K}$.

Далее мы исследовали зависимость межатомных обменных интегралов и локальных магнитных моментов от всестороннего сжатия (рис. 5). Как видно, уменьшение параметров кристаллической решетки приводит к монотонному уменьшению величин локальных и полного магнитных моментов и обменных интегралов, которое должно сопровождаться понижением температуры Нееля. Однако нетривиальное поведение *J*3 указывает на возможность появления под давлением сложной магнитной структуры.

Рис. 5. Зависимость межатомных обменных интегралов (*a*) и локальных магнитных моментов (*б*) от сжатия: $a: \Box - J1, \circ - J2, \ \Delta - J3, \ \nabla - J4, \ \diamond - J5, \ \lhd - J6; \ b: \Box - M(Cr_I), \circ - M(Cr_{II}), \ \Delta - M_{total}$

В работе [13] выполнен теоретический анализ методом Берто [14] возможных магнитных структур и условий их реализации в магнетиках с тетрагональной решеткой типа Cu_2Sb . Однако применимость выводов [13] к описанию AF-структуры Cr_2As^* представляется сомнительной вследствие использованного для их получения приближения изотропного обмена.

Предварительный анализ магнитных структур по методу Берто [13] показал, что для реализации экспериментально наблюдаемой AF-структуры в $\mathrm{Cr}_2\mathrm{As}$ существование анизотропии обменного взаимодействия $(J^{\uparrow\downarrow}(\mathrm{Cr}_\mathrm{I}-\mathrm{Cr}_\mathrm{II}) \neq J^{\uparrow\uparrow}(\mathrm{Cr}_\mathrm{I}-\mathrm{Cr}_\mathrm{II}))$ является необходимым условием.

_

^{*}В качестве определяющего параметра для существования АF-структуры автор [13] указывает на большую величину косвенного обмена Cr_{II} —As— Cr_{II} (в наших обозначениях – J6).

Работа выполнена при финансовой поддержке ДФФД Украины, проект № 41.1/038. Расчеты выполнены при поддержке академической грид-программы НАН Украины, проект № 232.

- 1. F.J. Darnell, W.H. Cloud, H.A. Jarrett, Phys. Rev. 130, 647 (1963).
- 2. A.E. Austin, E. Adelson, J. Appl. Phys. 33, 1356 (1962).
- 3. H. Katsuraki, N. Achiwa, J. Phys. Soc. Japan 21, 2238(1966).
- 4. Y. Yamaguchi, H. Watanabe, H. Yamaguchi, S. Tomiyoshi, J. Phys. Soc. Japan 32, 958 (1972).
- 5. В.И. Вальков, Е.П. Стефановский, ФТТ **34**, 49 (1992).
- 6. K. Ishimoto, M. Okonogi, K. Ohoyama et al., Physica B213–214, 336 (1995).
- 7. *H. Ebert et al.*, The Munich SPR-KKR package, version 3.6, http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR.
- 8. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980).
- 9. A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, V.A. Gubanov, JMMM 67, 65 (1987).
- 10. M. Shirai, T. Kawamoto, K. Motizuki, Int. J. Mod. Phys. **B7**, 770 (1993).
- 11. *J. Tobola, S. Kapryzk, D. Fruchart, M. Bacmann, P. Wolfers, R. Fruchart*, J. Alloys. Comp. **262–263**, 65 (1997).
- 12. T. Yildirim, Physica C469, 425 (2009).
- 13. D. Fruchart, Solid State Sci. 7, 767 (2005).
- 14. A. Kaller, H. Boller, E.F. Beratut, J. Phys. Chem. Solids 35, 1139 (1974).

В.І. Вальков, О.В. Головчан, Г.В. Росляк

ЗМІНЕННЯ ОБМІННИХ ПАРАМЕТРІВ В Cr2As ПІД ТИСКОМ

Досліджено електронну структуру антиферомагнітного (AF) Cr_2As . Виявлено анізотропію обмінної взаємодії між підгратками хрому ($J^{\uparrow\uparrow}(Cr_I-Cr_{II})=-6.07\cdot 10^{-3}$ eV, $J^{\uparrow\downarrow}(Cr_I-Cr_{II})=-4.54\cdot 10^{-3}$ eV). Проаналізовано поведінку обмінних інтегралів під час стискання кристалічної гратки.

Ключові слова: електронна структура, міжатомні обмінні інтеграли, антиферомагнетики

V.I. Valkov, A.V. Golovchan, A.V. Roslyak

PRESSURE DEPENDENCE OF INTERATOMIC EXCHANGE INTEGRALS IN Cr₂As

The electronic structure of antiferromagnetic (AF) Cr_2As is calculated. An anisotropy of exchange interaction between chrome sublattices is determined ($J^{\uparrow\uparrow}(Cr_I - Cr_{II}) = -6.07 \cdot 10^{-3}$ eV,

Физика и техника высоких давлений 2011, том 21, № 2

 $J^{\uparrow\downarrow}(\mathrm{Cr_I}-\mathrm{Cr_{II}})=-4.54\cdot10^{-3}~\mathrm{eV})$. The behavior of exchange integrals at lattice compression is analysed.

Keywords: electronic structure, interatomic exchange integrals, antiferromagnetics

- **Fig. 1.** Magnetic structure of Cr_2As : a FIM and δAF : $\circ Cr_I$, $\Box Cr_{II}$
- **Fig. 2.** Temperature dependence of magnetic moments of Cr atoms in $Cr_{2.2}As$ [6]: $\circ Cr_{II}$, $\bullet Cr_{II}$
- Fig. 3. Density of electronic states of Cr_2As for nonmagnetic (a), ferromagnetic (6) and experimentally observed antiferromagnetic (e) phases
- **Fig. 4.** Dependence of interatomic exchange interactions in Cr_2As from the interatomic distance (in lattice units *a*) in ferromagnetic (*a*) and antiferromagnetic (δ) structures: $\Box Cr_I Cr_I$, $\circ Cr_I Cr_{II}$, $\triangle Cr_{II} Cr_{II}$
- **Fig. 5.** Volume dependence of interatomic exchange integrals (*a*) and local magnetic moments (δ) in Cr₂As: $a: \Box -J1$, $\circ -J2$, $\Delta -J3$, $\nabla -J4$, $\diamond -J5$, $\lhd -J6$; $\delta: \Box -M(\text{Cr}_{\text{I}})$, $\circ -M(\text{Cr}_{\text{II}})$, $\Delta -M_{\text{total}}$