А. А. КОВАЛЕНКО¹, В. Б. ПАВЛЕНКО¹, С. В. ЧЁРНЫЙ¹

СВЯЗЬ ХАРАКТЕРИСТИК ВЫЗВАННЫХ ЭЭГ-ПОТЕНЦИАЛОВ С УРОВНЕМ НЕЙРОТИЗМА У ВЗРОСЛЫХ ЗДОРОВЫХ ИСПЫТУЕМЫХ

Поступила 15.02.10

Изучали связь оценок уровня нейротизма (одного из наиболее существенных факторов эмоциональной сферы личности) с амплитудно-временными характеристиками вызванных ЭЭГ-потенциалов (ВП). 102 испытуемым предъявляли положительные и отрицательные эмоциогенные, а также нейтральные в эмоциональном аспекте зрительные стимулы – изображения из набора Международной аффективной системы изображений (IAPS). Уровень нейротизма оценивали с использованием личностного опросника Айзенка. Сделан вывод, что испытуемые с высокими оценками по фактору нейротизма в целом характеризуются несколько более высокой скоростью и интенсивностью обработки эмоционально негативной информации, повышенной активацией процессов автоматического внимания и готовностью реагировать как на значимые, так и на малозначимые визуальные сигналы с целью возможного совладания с угрозой. Указанные особенности проявляются как меньшие значения латентных периодов компонентов Р1, N1, Р2, N2 и P3 и большие - амплитуд компонента P2 в составе ВП, возникавших в ответ на предъявление эмоционально негативных стимулов, по сравнению с соответствующими величинами у испытуемых с низким уровнем нейротизма. Амплитуды компонента N2 в случае действия негативных и нейтральных стимулов обнаруживали тенденцию к уменьшению. Применённый подход может быть использован для получения объективных показателей, являющихся коррелятами личностных особенностей эмоционального реагирования.

КЛЮЧЕВЫЕ СЛОВА: вызванные потенциалы, амплитуда, латентный период, эмоциогенные визуальные стимулы, нейротизм.

ВВЕДЕНИЕ

Среди задач нейрофизиологии эмоций (и нейропсихологии в целом) важное место занимают выяснение устойчивых индивидуально-типологических особенностей эмоциональной сферы личности и поиск их электрофизиологических коррелятов. Анализируя структуру личности, большинство исследователей в настоящее время отказались от категории типов личности и предпочитают использовать факторный подход, основанный на положении о существовании ряда измерений личности. Так, один из наиболее известных персонологов XX ст. Айзенк выделял три основных характеристики, лежащие в основе

Одно из этих измерений – нейротизм (или нейротицизм в англоязычной литературе) – является объектом особого интереса исследователей, поскольку его уровень может быть важным фактором, определяющим предрасположенность индивидуума к эмоциональным и тревожным расстройствам [2, 3]. Согласно теории Айзенка, такая личностная черта, как нейротизм, в значительной степени ассоциирована со склонностью к негативным эмоциям, что было подтверждено результатами поведенческих исследований [4].

Известно, что индивидуальная специфика эмоционального реагирования может проявляться как в относительно нейтральных, так и (особенно ярко) в эмоциогенных условиях, предъявляющих повышенные требования к эмоциональной сфере индивидуума. С учетом этого в настоящей работе мы

свойств личности и названные им измерениями последней, – экстра/интроверсию, нейротизм и психотизм [1].

¹ Таврический национальный университет им. В. И. Вернадского, Симферополь (АР Крым, Украина).

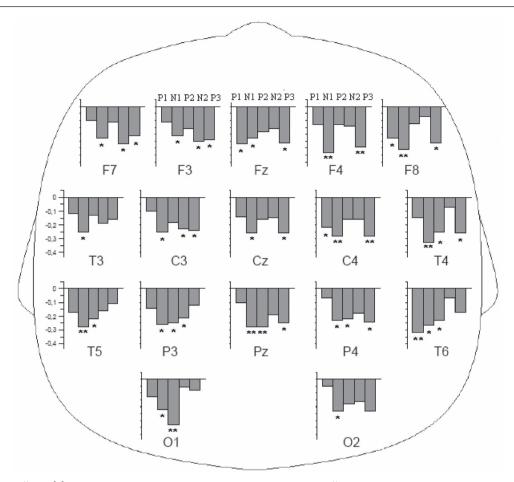
Эл. почта: anna.kovalenco@gmail.com (А. А. Коваленко); pavlenkovb@crimea.edu (В. Б. Павленко); chsergey77@mail.ru (С. В. Чёрный).

старались обнаружить наличие или отсутствие корреляций между уровнем нейротизма (как одного из наиболее существенных факторов эмоциональной сферы личности) и амплитудно-временными характеристиками вызванных ЭЭГ-потенциалов (ВП) в пределах достаточно репрезентативной группы взрослых испытуемых, находящихся под действием эмоционально положительной, отрицательной и нейтральной визуальной стимуляции.

МЕТОДИКА

Исследование было проведено с участием 102 испытуемых-правшей (43 мужчины и 59 женщин, возраст от 18 до 25 лет). Все испытуемые дали информированное согласие на участие в эксперименте. Уровень нейротизма определяли с применением личностного опросника Айзенка (Eysenck Personality Questionnaire, EPQ) [5]. В качестве стимульного материала при регистрации ВП использовали зрительные сигналы из набора Международной аффективной системы изображений (IASP), предъявляемые в режиме пассивного просмотра. Все стимулы (изображения лиц, предметов, сцен, пейзажей и т. п.) были разделены на три категории в зависимости от нормативных значений по шкалам знака вызываемой эмоции и уровня эмоциональной активации (по 30 стимулов каждой категории): нейтральные, положительные с высоким эмоциональным содержанием и отрицательные со сравнимо высоким эмоциональным содержанием. Процедуры предъявления стимулов и регистрации электрофизиологических показателей были подробно описаны в нашей предыдущей публикации [6].

Измеряли и анализировали латентные периоды (ЛП) максимумов и амплитуды последовательных компонентов в составе возникавших визуальных ВП – P1, N1, P2, N2 и P3. ВП регистрировали в 17 ЭЭГ-отведениях согласно стандартной международной системе 10-20 (F3/4, F7/8, C3/4, P3/4, O1/2, T3/4, T5/6, Fz, Cz и Pz).


Числовые данные электрофизиологического исследования и показатели психологического тестирования обрабатывались с применением стандартных методов вариационной статистики. Для проверки соответствия распределений переменных нормальному закону использовали критерий Колмогорова— Смирнова. Оценки связей между психологическими и физиологическими показателями основывались на вычислении коэффициентов ранговой корреляции Спирмена (если распределения значений показателей существенно отличались от нормального) или коэффициентов корреляции Пирсона (для показателей, характеризующихся нормальным распределением значений).

РЕЗУЛЬТАТЫ

Группа испытуемых, принявших участие в исследовании, была сформирована без предварительного отбора (единственным критерием было отсутствие явной психо- или невропатологии согласно данным медицинских карт). В связи с этим вариабельность значений уровня нейротизма в пределах обследованной группы была весьма высокой – от минимальных (0 баллов) до максимальных значений (25 баллов). В то же время анализ данных психологического тестирования показал, что среднее значение уровня нейротизма по указанной группе было весьма близким к средним значениям, определяемым в ходе широких популяционных обследований, и составляло 13.1 ± 0.6 балла.

Результаты корреляционного анализа свидетельствовали о наличии выраженных связей уровня нейротизма с рядом амплитудно-временных характеристик ВП, индуцированных предъявлением зрительных паттернов, причем наиболее многочисленные корреляционные связи отмечались при восприятии эмоционально отрицательных визуальных стимулов.

Уровень нейротизма отрицательно коррелировал с ЛП максимумов компонентов P1, N1, P2, N2 и P3 в составе ВП, зарегистрированных после предъявления эмоционально негативных стимулов. Так, у уровня нейротизма определялись негативные статистически значимые корреляции с величиной ЛП раннего позитивного компонента Р1 в лобной, центральной и височной областях правого полушария и срединном отведении от лобной области (С4: r = -0.22; F8: r = -0.23; Fz: r = -0.27, P < 0.05; T6: r = -0.32, P < 0.01) (см. рисунок). Значения ЛП раннего негативного компонента N1 демонстрировали отрицательные корреляционные связи со значениями по шкале «нейротизм» во всех 17 локусах отведений ВП. Коэффициенты корреляции для разных участков коры в данном случае составляли от - 0.22 до - 0.33 (при уровнях значимости P < 0.05 и P < 0.01). С этим показателем также отрицательно коррелировал ЛП среднелатентного позитивного компонента ВП Р2 в теменных и височных

Диаграммы значений коэффициентов корреляции между оценками уровня нейротизма у испытуемых и значениями латентных периодов максимумов компонентов P1, N1, P2, N2 и P3 в составе визуальных вызванных потенциалов (ВП) при действии эмоционально отрицательных стимулов.

По горизонтали – обозначения компонентов ВП; по вертикали – величины коэффициентов корреляции. Под диаграммами указаны локусы отведения. Одной и двумя звёздочками обозначены случаи корреляции, значимые с $P \le 0.05$ и $P \le 0.01$ соответственно.

Діаграми значень коефіцієнтів кореляції між оцінками рівня нейротизму у випробуваних і значеннями латентних періодів максимумів компонентів P1, N1, P2, N2 і P3 у складі візуальних викликаних потенціалів при дії емоційно негативних стимулів.

областях, а также в левом затылочном отведении (P4, T5: r=-0.22; T6: r=-0.23; P3, T4: r=-0.25, P<0.05; Pz: r=-0.28; O1: r=-0.33, P<0.01). ЛП среднелатентного негативного компонента N2 демонстрировал подобные связи в лобной, центральной и теменной областях левого полушария (F3: r=-0.25; F7: r=-0.27; C3: r=-0.22; P3: r=-0.21, P<0.05). Негативные взаимосвязи уровня нейротизма и ЛП позднего позитивного компонента P3 выявлялись почти по всей поверхности коры, за исключением симметричных задневисочных и затылочных отведений. Коэффициенты корреляции в этих случаях составляли от -0.21 до -0.29 при P<0.05 и P<0.01 (см. рисунок).

Для амплитуд компонента N2 в составе ВП, раз-

вивавшихся после предъявления эмоционально отрицательных стимулов в центральных областях коры, а также в левом передневисочном и срединном теменном локусах, также были характерны отрицательные связи с уровнем нейротизма (Сz: r = -0.25; Pz: r = -0.25; T3: r = -0.21, P < 0.05; C3, C4: r = -0.27, P < 0.01). Амплитуда компонента P2, наоборот, положительно коррелировала с данной характеристикой личности; соответствующие значения для правой центральнотеменной области и затылочных областей обоих полушарий были следующими — C4: r = 0.27; P4: r = 0.22; O1: r = 0.24, P < 0.01; O2: r = 0.36, P < 0.001.

При восприятии эмоционально положительных стимулов, как и при восприятии отрицатель-

ных, отмечались отрицательные корреляции уровня нейротизма с величиной ЛП компонента РЗ, однако они были менее выраженными и реже оказывались статистически значимыми. Такие корреляционные связи регистрировались в лобной, центральной и теменной областях левого полушария, в затылочной области правого полушария, а также в центральном и теменном срединных отведениях (СЗ, Т5, Сz: r = -0.22; F3, F7, Pz, O2: r = -0.23, P < 0.05). Обнаруживалась также значимая отрицательная корреляция амплитуды компонента РЗ в составе ВП, вызываемых «позитивной» стимуляцией, в срединном теменном отведении (Pz: r = -0.24, P < 0.05).

При восприятии эмоционально нейтральных визуальных стимулов единственным электрофизиологическим показателем, демонстрировавшим связь с уровнем нейротизма, оказалась амплитуда компонента N2. Положительные корреляции для величины указанного компонента были отмечены в лобных областях и срединном центральном отведении (F3: r = 0.24; F4: r = 0.26; Cz: r = 0.22, P < 0.05; Fz: r = 0.30, P < 0.01).

ОБСУЖДЕНИЕ

Согласно теории Айзенка, высокие оценки по фактору нейротизма в целом указывают на эмоционально-психологическую нестабильность ности. Высокие показатели по шкале нейротизма опросника Айзенка свидетельствуют о невротизации индивидуума и соответствуют высокой тревожности как черте личности. Такие индивиды в большинстве жизненных ситуаций тревожно-боязливы, неуверенны в себе, нервозны, полны сомнений, пессимистичны. Относительно низкие показатели по шкале нейротизма ассоциируются с достаточно низким уровнем тревожности, оптимизмом и уверенностью индивидуума в себе. Согласно современным представлениям, высокий уровень нейротизма коррелирует с повышенной чувствительностью к наказанию и другим негативным сигналам, поступающим из окружающей среды [2, 7]. Поэтому выявленные нами корреляционные связи уровня нейротизма с амплитудно-временными параметрами ВП, зарегистрированных в условиях предъявления эмоционально значимых зрительных стимулов (изображений, обладающих семантическим содержанием и вызывающих у подавляющего большинства испытуемых вполне предсказуемые детерминированные эмоции), выглядят вполне закономерными. Наиболее примечательным, видимо, является наличие отрицательных корреляций оценок нейротизма с ЛП максимумов компонентов Р1, N1, P2, N2 и P3 в составе ВП, возникавших в ответ на предъявление эмоционально негативных стимулов. Иными словами, чем большие оценки по шкале «нейротизм» демонстрировал/а испытуемый/ая, тем обычно быстрее развивались все исследуемые компоненты его/ее ВП при восприятии отрицательной эмоциональной информации. Необходимо, естественно, заметить, что коэффициенты корреляции, количественно характеризующие подобную связь, были не очень высокими и, как правило, не превышали 0.3. В ряде случаев, однако, подобные зависимости характеризовались достаточно высокой достоверностью. Подобная ситуация в целом вполне ожидаема, если учесть практическое отсутствие какого-либо отбора испытуемых при формировании обследованной группы, значительный ее объем и высокую интериндивидуальную вариабельность оценок по шкале нейротизма. Уже упоминалось, что в данной группе имелись индивидуумы как с очень низкими, так и с весьма высокими уровнями этого личностного фактора.

Процесс восприятия любой сенсорной информации включает в себя ряд операций - приём и выделение отдельных признаков стимула, сопоставление их между собой, сравнение с эталоном (эталонами), создание адекватных гипотез и отнесение предмета к определённой категории (категоризация, осознание) [8]. Согласно существующим представлениям, интервал, в котором развивается индуцированный поступлением сенсорной посылки ВП, охватывает практически весь временной интервал между предъявлением стимула и поведенческой и/или когнитивной реакцией и соответствует почти всем процессам, приводящим к формированию поведенческого ответа. При этом отдельные компоненты ВП рассматривают как электрофизиологическое отражение последовательных этапов восприятия и переработки информации. По-видимому, относительное укорочение ЛП всех исследуемых компонентов ВП соответствует возрастанию скорости восприятия информации из внешней среды (ранние компоненты ВП) и извлечения имеющейся в ЦНС информации из памяти и сопоставления её с внешними сигналами (поздние компоненты ВП). Это способствует «расширению» внешних и внутренних афферентных потоков, связанных с эмоциями и мотивациями [9]. Таким образом, при восприятии эмоционально негативных стимулов у испытуемых с высоким уровнем нейротизма создаются условия для некоторого относительного ускорения потока информации и увеличения ее объема.

Нужно отметить, что ЛП компонента РЗ в составе ВП, зарегистрированных в условиях предъявления эмоционально позитивных стимулов, также был положительно связан с уровнем нейротизма, хотя такие связи были менее значимы и охватывали менее обширные области коры. Подчеркнем, что компонент РЗ (волна РЗ00) рассматривается как «классический» ЭЭГ-потенциал, связанный с событием (ССП).

Для амплитуд компонента Р2, зарегистрированных при восприятии эмоционально негативных стимулов, были характерны положительные связи с уровнем нейротизма. Такие корреляции проявлялись в основном в задних отделах коры и были особенно выражены в затылочной области правого полушария. В работе Полянцева и соавт. [10] сообщалось, что у лиц с высоким уровнем нейротизма, высокой тревожностью и наличием комплекса устойчивых отрицательных эмоций также наблюдалось относительное увеличение интенсивности вызванной ЭЭГ-активности в затылочных областях коры (выраженное преимущественно в правом полушарии). Повышенная амплитуда колебания Р2, свидетельствующая о повышении активности в проекционных областях зрительного анализатора, может быть связана со значительной интенсивностью переработки отрицательно эмоционально окрашенной визуальной информации у нейротичных индивидуумов.

Мы отметили также отрицательные связи оценок нейротизма с амплитудами компонента N2 при восприятии отрицательных эмоциональных стимулов, что свидетельствует о сдвиге исследуемого компонента в сторону позитивности, т. е. об уменьшении амплитуды пика N2 у испытуемых с более высокими значениями по шкале «нейротизм» в условиях восприятия эмоциогенных негативных стимулов.

Считается, что развитие волны N2, от момента возникновения которой, как полагают, начинается этап опознания стимула [11], связано с активностью механизмов селекции информации. Чем более развито селективное внимание, тем меньше амплитуда данной волны [12]. Имеются сведения о том, что у высокотревожных индивидуумов компонент N2 ВП, развивающихся при предъявлении эмоционально отрицательных угрожающих стимулов, был существенно редуцирован. Это наблюдение связы-

вается авторами с более эффективной деятельностью сферы внимания у подобных личностей [13]. На наш взгляд, данное утверждение может быть справедливо и в отношении нейротизма, в значительной степени связанного с такой чертой, как тревожность.

Примечателен тот факт, что характер корреляций амплитуды колебания N2 при действии нейтральных в эмоциональном аспекте стимулов был сходен с таковым при действии негативных сигналов, отличаясь лишь меньшим числом соответствующих значимых связей. В условиях предъявления и тех, и других стимулов амплитуда N2 коррелировала с уровнем нейротизма отрицательно, т. е. индивидуумам с высокими значениями по шкале «нейротизм» были в целом свойственны меньшие значения амплитуд N2 как в случае действия негативных эмоциогенных стимулов, так и в случаях нейтральной стимуляции. Ранее было показано, что для лиц, отличающихся высоким уровнем нейротизма, характерна повышенная активация автоматических процессов внимания к любым новым раздражителям (которые они, однако, оценивают исходя из субъективной значимости таких стимулов) [14]. Подобные индивидуумы особо чувствительны к сигналам, предваряющим наказание; такие лица склонны оценивать даже эмоционально нейтральную ситуацию как несущую угрозу [15]. Можно предположить, что наблюдаемые корреляции отражают некоторое усиление активности механизмов визуального сканирования окружающей среды с целью выделения значимой (возможно, субъективно важной) информации в указанных ситуациях. Обнаруженный феномен соответствует данным экспериментальных психологических исследований. В таких работах были получены свидетельства того, что высокотревожные индивидуумы проводят постоянный детальный мониторинг окружения с целью (осознанной или неосознанной) выявления не только угрожающих, но и безопасных сигналов и возможного совладания с угрозой [16].

Результаты недавних исследований [17] указывают на связи уровня нейротизма с повышенной активностью височных структур головного мозга, особенно миндалины. Нейронные механизмы этого комплекса контролируют негативные эмоции и чувствительность к стимулам, связанным с наказанием [18]. В то же время установлено [19], что когнитивная регуляция эмоциональных ответов на предъявление аверсивных стимулов в значительной степе-

ни осуществляется префронтальными областями коры, модулирующими активность миндалины. В исследованиях с использованием метода позитронно-эмиссионной томографии было установлено, что оценки нейротизма положительно связаны с уровнем активности префронтальной коры, регистрируемым в процессе восприятия эмоционально негативных, но не позитивных стимулов [20].

Резюмировать наши наблюдения можно следующим образом. Согласно результатам нашей работы, такой фактор, как нейротизм, обнаруживает ряд корреляционных связей с характеристиками ВП при восприятии сложных зрительных стимулов-изображений. Имеются основания полагать, что лица с высокими значениями по этому фактору характеризуются несколько более высокой скоростью и интенсивностью обработки эмоционально негативной визуальной информации, повышенной активацией процессов автоматического внимания и готовностью реагировать как на значимые, так и на малозначимые сигналы с целью возможного совладания с угрозой. Указанные особенности отражаются в следующем: в случаях предъявления эмоционально негативных стимулов значения ЛП компонентов P1, N1, P2, N2 и P3 меньше, а амплитуды компонента Р2 ВП – больше, чем соответствующие значения у лиц с низкими оценками уровня нейротизма. В условиях действия негативных и нейтральных стимулов амплитуды компонента N2 у высоконейротичных индивидуумов обычно несколько меньше.

Мы полагаем, что применённый подход может быть использован для получения объективных показателей, являющихся коррелятами личностных особенностей эмоционального реагирования того или иного индивидуума.

Γ . О. Коваленко¹, В. Б. Павленко¹, С. В. Чорний¹

ЗВ'ЯЗОК ХАРАКТЕРИСТИК ВИКЛИКАНИХ ЕЕГ-ПОТЕНЦІАЛІВ З РІВНЕМ НЕЙРОТИЗМУ У ДОРОСЛИХ ЗДОРОВИХ ВИПРОБУВАНИХ

¹ Таврійський національний університет ім. В. І. Вернадського, Сімферополь (АР Крим, Україна).

Резюме

Вивчали зв'язок оцінок рівня нейротизму (одного з найбільш істотних факторів емоційної сфери особистості) з амплітудно-часовими характеристиками викликаних ЕЕГ- потенціалів (ВП). 102 випробуваним пред'являли позитивні й негативні емоціогенні, а також нейтральні в емоційному аспекті зорові стимули - зображення з набору Міжнародної афективної системи зображень (IAPS). Рівень нейротизму оцінювали з використанням особистісного питальника Айзенка. Зроблено висновок, що випробувані з високими оцінками за фактором нейротизму в цілому характеризуються дещо більш високою швидкістю та інтенсивністю обробки емоційно негативної інформації, підвищеною активацією процесів автоматичної уваги й готовністю реагувати як на значущі, так і на малозначущі візуальні сигнали з метою можливого подолання загрози. Вказані особливості проявлялись як менші значення латентних періодів компонентів Р1, N1, Р2, N2 і Р3 і більші - амплітуд компонента Р2 у складі ВП, котрі виникали у відповідь на пред'явлення емоційно негативних стимулів, порівняно з відповідними величинами у випробуваних з низьким рівнем нейротизму. Амплітуди компонента N2 у разі дії негативних і нейтральних стимулів демонстрували тенденцію до зменшення. Застосований підхід може бути використаний для отримання об'єктивних показників, що є корелятами особистісних особливостей емоційного реагування.

СПИСОК ЛИТЕРАТУРЫ

- H. Eysenck, "Dimensions of personality: 16, 5 ore 3? Criteria for taxonomic paradigm," *Person. Individ. Diff.*, 12, 773-790 (1991)
- 2. D. Watson and L. A. Clark, "On traits and temperament: general and specific factors of emotional experience and their relation to the five-factor model," *J. Person.*, **60**, No. 2, 441-476 (1992).
- 3. A. A. Khan, K. C. Jacobson, C. O. Gardner, et al., "Personality and comorbidity of common psychiatric disorders," *Br. J. Psychiat.*, **186**, 190-196 (2005).
- 4. R. Gomez, A. Gomez, and A. Cooper, "Neuroticism and extraversion as predictors of negative and positive emotional information processing: comparing Eysenck's, Gray's, and Newman's theories," *Eur. J. Person.*, **16**, No. 5, 333-350 (2002).
- 5. М. М. Кабанов, А. Е. Личко, В. М. Смирнов, *Методы психологической диагностики и коррекции в клинике*, Медицина, Ленинград (1983).
- 6. А. А. Коваленко, В. Б. Павленко, С. В. Чёрный, "Отражение эмоциональной значимости визуальных стимулов в характеристиках вызванных ЭЭГ-потенциалов", *Нейрофизиология* / Neurophysiology, **42**, № 1, 78-87 (2010).
- 7. C. E. Izard, D. Z. Libero, P. Putnam, et al., "Stability of emotion experiences and their relations to traits of personality," *J. Person. Soc. Psychol.*, **64**, No. 5, 847-860 (1993).
- 8. А. М. Иваницкий, В. Б. Стрелец, И. А. Корсаков, *Информационные процессы мозга и психическая* деятельность, Наука, Москва (1984).
- 9. А. М. Иваницкий, *Мозговые механизмы оценки сигналов*, Медицина, Москва (1976).
- 10. В. А. Полянцев, А. Г. Румянцева, М. А. Куликов, "Исследование особенностей эмоциональных реакций у лиц с различным уровнем нейротизма", *Физиология человека*, **11**, № 4, 594-605 (1985).
- 11. K. Daffner, G. Mesulam, L. Scinto, et al., "Regulation of

- attention to novel stimuli by frontal lobes: an event-related potential study," *NeuroReport*, **9**, No. 5, 787-791 (1998).
- R. J. Barry, S. J. Johnstone, and A. R. Clarke, "A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials," *Clin. Neurophysiol.*, 114, No. 3, 184-198 (2003).
- T. A. Dennis and C. C. Chen, "Trait anxiety and conflict monitoring following threat: an ERP study," *Psychophysiology*, 46, No. 1, 122-131 (2009).
- J. F. Wallace and J. P. Newman, "Neuroticism and the facilitation of the automatic orienting of attention," *Person. Individ. Diff.*, 24, No. 2, 253-266 (1998).
- J. F. Wallace and J. P. Newman, "Neuroticism and the attentional mediation of dysregulatory psychopathology," *Cogn. Ther. Res.*, 21, No. 2, 135-156 (1997).

- W. Heller, J. B. Nitschke, M. A. Etienne, et al., "Patterns of regional brain activity differentiate types of anxiety," J. Abnorm. Psychol., 106, No. 3, 376-385 (1997).
- M. L. Gorno-Tempini, K. P. Rankin, J. D. Woolley, et al., "Cognitive and behavioral profile in a case of right anterior temporal lobe neurodegeneration," *Cortex*, 40, No. 4, 631-644 (2004).
- 18. J. LeDoux, "The emotional brain, fear, and the amygdala," *Cell. Mol. Neurobiol.*, 23, Nos. 4/5, 727-738 (2003).
- S. H. Kim and S. Hamann, "Neural correlates of positive and negative emotion regulation," *J. Cogn. Neurosci.*, 19, No. 5, 776-798 (2007).
- T. Canli, Z. Zhao, J. E. Desmond, et al., "An fMRI study of personality influences on brain reactivity to emotional stimuli," *Behav. Neurosci.*, 115, No. 1, 33-42 (2001).