Т. С. НОВОРОДОВСКАЯ¹, С. М. КОРОГОД¹

СРАВНИТЕЛЬНЫЙ МОДЕЛЬНЫЙ АНАЛИЗ КАЛЬЦИЕВОГО ОБМЕНА МЕЖДУ ЦИТОЗОЛЕМ И ДЕПО МИТОХОНДРИЙ ИЛИ ЭНДОПЛАЗМАТИЧЕСКОГО РЕТИКУЛУМА

Поступила 10.09.09

Объектом исследования были однокомпартментные математические модели, которые соответствовали фрагменту дендрита нейрона Пуркинье мозжечка, содержащему в себе митохондрии (модель 1) или цистерну эндоплазматического ретикулума – ЭР (модель 2) в качестве кальциевых депо. Исследовали зависимость динамики уровней внутриклеточного Са²⁺ от соотношения геометрических размеров обменивающихся кальцием частей внутриклеточного пространства и различия кинетических характеристик депонирования Са²⁺ разными депо, занимающими различные части объема компартмента. Плазматическая мембрана компартмента обладала характерными для упомянутых нейронов ионными каналами, в том числе каналами, обеспечивающими возбуждающий синаптический ток, и кальциевым насосом. Уравнения моделей учитывали обмен Са²⁺ между цитозолем, внеклеточной средой, органельными депо, неорганельными эндогенными буферами и экзогенным буфером (флуоресцентным красителем), а также диффузию Са²⁺ в прилежащие участки дендрита. В модели 1 митохондрии обменивались Ca²⁺ с цитозолем через унипортер и натрий-кальциевый обменник; учитывались также такие митохондриальные процессы, как цикл трикарбоновых кислот и аэробное клеточное дыхание. В модели 2 мембрана ЭР обладала кальциевым насосом, каналами утечки и каналами кальцийиндуцированного и инозитол-3-фосфатзависимого высвобождения Са²⁺. Увеличение доли депо в общем объеме компартмента от 1 до 36 % приводило к пропорциональному приращению пиковых значений цитозольной концентрации кальция ([Ca²⁺]); соответственно увеличивалась и концентрация Ca²⁺ в митохондрии ([Ca²⁺]_{mit}) или ЭР ([Ca²⁺]_{FR}). За время генерации в цитозоле одинаковых по интенсивности и длительности колоколообразных кальциевых сигналов ЭР благодаря более высокой скорости депонирования был способен поглотить в несколько раз больше Ca²⁺, чем митохондрии (в четыре раза при 36 %-ном заполнении объема органеллами). Предполагается, что выявленные различные кинетические характеристики депонирования Ca²⁺ разными органеллами обусловлены скоростями реакций связывания с имеющимися в мембране депо транспортными молекулами, а значит, определяются концентрациями (поверхностными плотностями) этих молекул и их насыщением при определенных уровнях [Са²⁺]. Показано, что наполненность внутриклеточного объема органельными депо любого типа является структурным фактором, способным существенно модулировать значения концентрации Са²⁺.

КЛЮЧЕВЫЕ СЛОВА: дендрит, динамика уровня Ca²⁺, субклеточная геометрия, кальциевое депо, митохондрия, эндоплазматический ретикулум.

введение

Кальций является универсальным вторичным посредником, определяющим инициацию и развитие многих жизненно важных клеточных процессов [1– 4]. Значительную роль в регулировании внутриклеточной концентрации кальция играют неорганельные кальциевые буферы и органельные депо [5]. Наибольшей емкостью среди подобных органельных депо обладают эндоплазматический ретикулум – ЭР (в мышечных клетках – саркоплазматический ретикулум) [6–10] и митохондрии [11–16],

¹Днепропетровский национальный университет им. Олеся Гончара (Украина).

Эл. почта: ber_linn@yahoo.com (Т. С. Новородовская).

причем кинетические характеристики депонирования у них существенно различаются. Митохондрии, как и ЭР, являются динамическими структурами [7, 8]. И в нормальных физиологических состояниях, и при разных видах патологии их размер, форма и количество могут изменяться [17–30], вследствие чего варьирует и степень заполнения ними внутриклеточного пространства. В связи с этим актуальной задачей является выяснение специфики кальциевой динамики, обусловленной, с одной стороны, структурными факторами (такими, как наполненность внутриклеточного пространства органельными депо), а с другой – особенностями временно́го течения ионообменных процессов, механизмы которых у митохондрий и ЭР различны.

Цитозольная концентрация кальция существенно зависит от соотношения объемов и поверхностей органельных депо и объема безорганельной части цитозоля, т. е. от относительной наполненности внутриклеточного пространства органельными депо [31]. Структурозависимость кальциевых сигналов обусловлена фундаментальными законами сохранения при переносе вещества через мембрану между разновеликими объемами органелл и свободного от них цитозоля. Общее количество переносимых ионов определяется площадью поверхности мембраны и поверхностной плотностью мембранных транспортных механизмов (многие из которых являются концентрационнозависимыми). Поэтому очевидно, что при одинаковой поверхностной плотности мембранных транспортных молекул изменения ионной концентрации будут более значительными в меньшем объеме. Таким образом, следует ожидать, что кальциевые сигнальные процессы в малоразмерных частях нейрона – тонких (дистальных) дендритах, дендритных шипиках и синаптических терминалях - в наиболее существенной степени зависят от указанных геометрических соотношений. Это было продемонстрировано в нашей предыдущей работе [31] на примере субклеточной структуры, содержащей в себе ЭР в качестве органельного кальциевого депо. В настоящем же исследовании решались две основные задачи. Мы старались выяснить зависимости внутриклеточной кальциевой динамики от соотношения геометрических размеров частей внутриклеточного пространства, обменивающихся кальцием (цитозоля и митохондрий, функционирующих в качестве органельных депо), а также характеристик кальциевых буферов. Мы также провели сравнительный анализ различий динамики кальциевого обмена между цитозолем и депо, обусловленных особенностями кинетики обменных механизмов у таких депо, как митохондрии и ЭР. Для более наглядного решения второй задачи нынешние исследования выполнялись на таком же объекте, как и в предыдущей работе [31], - математических моделях тонкого цилиндрического фрагмента нервной клетки, размеры и биофизические свойства которого подобны таковым у дистальных дендритных стволов и шипиков нейронов Пуркинье мозжечка. Это не только облегчает сравнительный анализ; характеристики модели соответствуют таковым дендритов нейронов Пуркинье, в которых присутствуют как ЭР, так и митохондрии [6–16]. Показано, что органеллы обоих типов в различных нормальных и патологических условиях претерпевают существенные структурные изменения [7, 8, 17–30].

ОПИСАНИЕ МОДЕЛЕЙ

Исследования были выполнены на однокомпартментных моделях, соответствующих цилиндрическому фрагменту дендрита нейрона Пуркинье мозжечка (рис. 1), в которых присутствовали кальциевые депо – митохондрии (модель 1) или цистерна ЭР (модель 2).

Одинаковыми у обеих моделей были форма и размер компартмента, свойства его плазматической мембраны, буферов и флуоресцентного красителя, используемого в соответствующих экспериментах для измерения уровня Ca²⁺, а также наполненность дендрита органельными депо. Диаметр и длина компартмента были такими (d=1 мкм; l=31.831 мкм), что его объем и площадь мембраны составляли соответственно $V = \pi \cdot d^2 l/4 = 25$ мкм³ и $S = \pi \cdot dl = 100$ мкм². Плазматическая мембрана обладала ионными каналами и насосами (схема на рис. 1, Б, толстые стрелки), характерными для мембраны дендритов названных нейронов и описываемыми так же, как и в наших предыдущих работах [31-33]. В такой мембране присутствовали каналы входящего кальциевого тока Р-типа ($I_{C_a(P)}$) (иное обозначение P/Q), выходящего калиевого тока задержанного выпрямления (I_{к(DR)}), калиевого тока А-типа (I_{к(A)}), кальцийзависимого калиевого тока $(I_{\rm K(Ca)})$ и неспеци-фического тока утечки $(I_{\rm leak})$, а также кальциевый насос – Са²⁺-АТФаза, обеспечивающая I_{Са(АТР)}. В качестве стимула рассматривалась активация потенциалзависимого возбуждающего синаптического тока $I_s = G_s(t)(E - E_s)$, обусловленная внесением

Р и с. 1. Моделирование кальциевой динамики в дендритном компартменте нейрона Пуркинье мозжечка, содержащем в себе митохондрии (*A*, *Б*) или цистерну эндоплазматического ретикулума – ЭР (*B*, *Г*) в качестве депо. *А*, *B* – схемы мембранных и внутриклеточных электрогенных и ионообменных механизмов; *Б*, *Г* – схемы структурной организации. Подробные объяснения в тексте.

Р и с. 1. Моделювання кальцієвої динаміки в дендритному компартменті нейрона Пуркін'є мозочка, котрий вміщує мітохондрії (*A*, *Б*) або цистерну ендоплазматичного ретикулума (*B*, *Г*) як депо.

изменяющейся во времени t синаптической электропроводности $G_{\rm s}(t) = G_{\rm Smax}f(t)$, где $G_{\rm Smax}$ – пиковое значение, а $E_{\rm s} = 0$ мВ – потенциал равновесия для тока (потенциал его реверсии). Иначе говоря, мы использовали аналог активации глутаматергического синапса АМРА-типа. Зависимость синаптической электропроводности от времени f(t) описывалась так называемой альфа-функцией ([34], уравнение 1.1), график которой представляет собой асимметричную колоколообразную кривую. В моделях учитывались диффузия Ca²⁺ из оперативного объема («действующего» пула) в безорганельный объем цитозоля, а также обмен Ca²⁺ между цитозолем, внеклеточной средой, депо (митохондриями или ЭР), эндогенными буферами («быстрым» – кальмодулином и «медленным» – парвальбумином), а также флуоресцентным красителем Fura-4 (D, dye), обладающим свойствами экзогенного буфера. Параметры буферов и флуорофора были взяты из опубликованных ранее работ [35–38].

В модели 1 каждая митохондрия была представлена цилиндром протяженностью l и диаметром 0.1 мкм. Количество митохондрий N варьировали от одной до 36 (1, 4, 9, 16, 25 или 36) таким образом, что они занимали от 1 до 36 % общего объема компартмента $V_{\rm mit}N/V$. Иными словами, размах вариаций был таким же, как и в случае ЭР. Соответственно определялись характеристические геометрические соотношения: отношение площади плазматической мембраны к безорганельному объ-

ему цитозоля $S/(V - V_{mit}N)$ и отношение объемов митохондрий и цитозоля $V_{mit}N/(V - V_{mit}N)$. Модель 1 учитывала такие митохондриальные процессы, как цикл трикарбоновых кислот и аэробное клеточное дыхание. Обмен Ca²⁺ с цитозолем происходил через кальциевый унипортер – Φ_{uni} и натрий-кальциевый обменник – Φ_{NaCa} (уравнения, описывающие эти процессы, были представлены в работе Кортасса и соавт. [39]).

В модели 2, как и в нашей предыдущей работе [31]. ЭР был представлен цилиндрической цистерной, имевшую ту же протяженность l, что и компартмент (сегмент дендрита). Диаметр цистерны ЭР $d_{\rm EP}$ варьировали от 0.1 до 0.6 мкм с шагом 0.1 мкм, оставляя диаметр d дендритного компартмента неизменным. При этом доля объема ЭР в объеме компартмента $V_{\rm FR}/V$ составляла от 1 до 36 %. Соответственно изменялись и входящие в уравнения модели 2 (см. ниже) характеристические геометрические соотношения: отношение площади плазматической мембраны к безорганельному объему цитозоля $S/(V - V_{\rm ER})$ и отношение объемов ЭР и цитозоля $V_{\rm ER}/(V-V_{\rm ER})$. ЭР обменивался Ca²⁺ с цитозолем через насосы (поток захвата $\Phi_{\rm up}$) и каналы (поток пассивной утечки $\Phi_{_{\mathrm{ER}\ \mathrm{leak}}}$, а также два потока высвобождения Φ_{CICR} и Φ_{IP3} , индуцированные кальцием и инозитол-3-фосфатом [IP3] соответственно). Учитывались также процессы продукции/распада IP3 (сдвиги [IP3]). Для данной модели мы несколько модифицировали уравнения потоков через мембрану ЭР, описанные в работе Де Шуттера и Смолена [35].

Поведение моделей характеризовали, определяя изменения потенциала на плазматической мембране (E), концентрации кальция в цитозоле и депо ($[Ca^{2+}]_i$ и $[Ca^{2+}]_{mit}$ или $[Ca^{2+}]_{er}$ соответственно), а также концентрации комплекса кальций-флуорофор [CaD]; последний показатель опосредованно определяет интенсивность сигнала флуоресцентного зонда.

Изменения мембранного потенциала определялись алгебраической суммой ионных токов через каналы и насос (см. схемы на рис. 1, *A* и *B*):

$$dE/dt = (I_{Ca(P)} + I_{K(DR)} + I_{K(A)} + I_{K(Ca)} + i_{leak} + I_{Ca(ATP)} + I_{S})/C_{m}, \quad (1)$$

где $C_{\rm m}$ – емкость единицы поверхности плазматической мембраны (трансмембранные токи I также отнесены к единице поверхности).

Изменения [Ca²⁺]_{*i*} определялись алгебраической суммой потоков:

$$d[\operatorname{Ca}^{2+}]_i / dt = \Sigma_k \Phi_k, \qquad (2)$$

где Φ_k – парциальные потоки обмена с внеклеточной средой (Φ_e), буферами (Φ_{buf}), депо (Φ_{st}) и поток диффузии (Φ_{dif}) между данным компартментом («действующим» пулом) и цитозолем соседних безорганельных компартментов (bulk), где концентрация $[Ca^{2+}]_{bulk}$ в пределах времени наблюдения считалась практически неизменной.

Потоки Φ_{e} , Φ_{buf} и Φ_{dif} были одинаковы для обеих моделей и описывались уравнениями:

$$\Phi_{\rm e} = -(S/V_{\rm cyt})(I_{\rm Ca(P)} + I_{\rm Ca(ATP)})/(z_{\rm Ca}F),$$
(3)

$$\Phi_{\rm dif} = -\left(\left[{\rm C}a^{2^+}\right]_i - \left[{\rm C}a^{2^+}\right]_{\rm bulk}\right)/\tau_{\rm dif},\tag{4}$$

где S – площадь поверхности плазматической мембраны (мкм²); $V_{\rm cyt}$ – объем безорганельной части цитозоля ($V_{\rm cyt} = V - V_{\rm mit}N$ или $V_{\rm cyt} = V - V_{\rm ER}$), измеряемый в литрах (т. е. 1 дм³ = 10³см³ = 10¹⁵мкм³) и определяемый объемом дендритного компартмента (V) за вычетом объема содержащихся в нем органелл.

 $\Phi_{\rm buf}$ определяется решением приведенных ниже уравнений связывания (11)–(15).

В модели 1 (депо – митохондрии):

$$\boldsymbol{\Phi}_{\rm st} = \boldsymbol{\Phi}_{\rm mit} = (V_{\rm mit} N / V_{\rm cyt}) \ d[\mathrm{Ca}^{2+}]_{\rm mit} \ / dt, \tag{5}$$

$$d[\operatorname{Ca}^{2+}]_{\mathrm{mit}} / dt = \Phi_{\mathrm{uni}} - \Phi_{\mathrm{NaCa}}, \tag{6}$$

где Φ_{uni} и Φ_{NaCa} – потоки через унипортер и натрийкальциевый обменник (мМ·мс⁻¹), отнесенные к единице поверхности митохондриальной мембраны [39].

В модели 2 (депо – ЭР):

$$\boldsymbol{\Phi}_{\rm st} = \boldsymbol{\Phi}_{\rm ER} = \left(V_{\rm ER} / V_{\rm cyt} \right) d \left[\operatorname{Ca}^{2+} \right]_{\rm ER} / dt, \tag{7}$$

$$d[\operatorname{Ca}^{2+}]_{\mathrm{ER}}/dt = S_{\mathrm{ER}}(\boldsymbol{\Phi}_{\mathrm{up}} - \boldsymbol{\Phi}_{\mathrm{ER}\,\mathrm{leak}} - \boldsymbol{\Phi}_{\mathrm{CICR}} - \boldsymbol{\Phi}_{\mathrm{IP3}}), \qquad (8)$$

где Φ_{up} , $\Phi_{ER \ leak}$, Φ_{CICR} и Φ_{IP3} – отнесенные к единице поверхности мембраны ЭР потоки захвата, пассивной утечки, а также высвобождения через Ca²⁺- и IP3-чувствительные каналы (М·мкм⁻²·мс⁻¹).

Решение (интеграл) дифференциального уравнения (2):

$$\Delta[\operatorname{Ca}^{2+}]_i(t) = \int d[\operatorname{Ca}^{2+}]_i = \int_{\operatorname{t}} \sum_k \Phi_k \, dt = \sum_k \int_{\operatorname{t}} \Phi_k \, dt \tag{9}$$

позволяет выделить и исследовать вклады любых

НЕЙРОФИЗИОЛОГИЯ / NEUROPHYSIOLOGY.—2009.—Т. 41, № 5

потоков или их комбинаций в общий кальциевый сигнал

$$\Delta[\operatorname{Ca}^{2+}]_{i}(t) \mid_{k} = \int_{t} \Phi_{k} dt.$$
(10)

В контексте данной работы наиболее важно сравнить вклады Φ_{mit} и Φ_{ER} . Для выделения особенностей каждого вклада, связанных с различиями обменных механизмов у митохондрий и ЭР, желательно, чтобы депо обоих типов получали одинаковые «входящие» кальциевые сигналы. Это реализовалось в условиях превалирования общих для обеих моделей потоков (Φ_e , Φ_{buf} и Φ_{dif}) по сравнению с потоком обмена с тем или иным депо (Φ_{mit} или Φ_{FR}).

Амплитудой кальциевого транзиента управляли, изменяя интенсивность диффузионного потока, а временны́ми характеристиками – изменяя температуру (реализуя влияние температурного фактора на потенциалзависимые проводимости).

В обеих моделях динамика связывания кальция с эндогенными буферами [B₁] (парвальбумин) и [B₂] (кальмодулин), а также с флуорофором [D] (Fura-4F) описывалась одинаковыми уравнениями:

$$d[\mathbf{B}_{1}]/dt = K_{2B1}[\mathbf{C}\mathbf{a}\mathbf{B}_{1}] - K_{1B1}[\mathbf{C}\mathbf{a}^{2+}]_{i}[\mathbf{B}_{1}],$$
(11)

$$d[B_2]/dt = K_{2B2}[CaB_2] - K_{1B2}[Ca^{2+}]_i[B_2],$$
(12)

$$d[D]/dt = K_{2D}[CaD] - K_{1D}[Ca^{2+}]_i[D],$$
 (13)

где K_{1*} – константы скорости связывания свободного внутриклеточного кальция с буферами и красителем (мМ·мс)⁻¹; K_{2*} – константы скорости распада (диссоциации) комплексов [CaB₁], [CaB₂] и [CaD] (мс⁻¹), а [B₁], [B₂] и [D] – концентрации свободных буферов и красителя в цитоплазме (мкМ). Решение последнего уравнения [D] использовалось для расчета концентрации комплекса кальций–флуорофор:

$$[CaD] = [D]_{tot} - [D], \qquad (14)$$

где [D]_{tot} – полная концентрация связанного с каль-

цием и свободного флуоресцентного красителя внутри компартмента (аналог так называемой пипеточной концентрации в натурных экспериментах). Кинетические характеристики буферов и красителя приведены в таблице.

Построение и исследование моделей осуществляли в программной среде моделирования «НЕЙРОН» [34].

РЕЗУЛЬТАТЫ

Особенность данного модельного исследования состояла в том, что для выявления различий динамики депонирования кальция митохондриями и цистерной ЭР различия цитозольных концентрационных сигналов, активирующих процессы депонирования у разных органелл, были минимизированы. Это было достигнуто путем увеличения диффузионного потока Ca²⁺ из «действующего» пула в соседние области исследуемой субклеточной структуры.

Динамика уровня Ca²⁺ при разном относительном объеме депо в общем объеме дендритного компартмента и идентичной интенсивности синаптического возбуждения. Из рис. 2 видно, как влияет на динамику [Ca²⁺] относительная наполненность цитозоля компартмента митохондриями или ЭР. Эти данные были получены при шести значениях наполненности – от 1 до 36 % объема компартмента (1-6) и идентичной синаптической активации ($G_s =$ = 2 нС). Мы сопоставляли изменения мембранного потенциала (Е, мВ), внутриклеточной концентрации Ca²⁺ ([Ca²⁺]_i, мкМ) и концентраций Ca²⁺ в митохондрии ([Ca²⁺]_{mit}, мкМ) (A-B) или в ЭР ($\Gamma-E$). Идентичное синаптическое возбуждение вызывало одинаковые электрические реакции (A, Γ), которые не зависели ни от типа депо, ни от занимаемой этими депо части внутриклеточного пространства. Не влияя на электрические отклики, увеличение наполненности внутриклеточного объема компартмента как митохондриями, так и ЭР приводило к существенному увеличению интенсивности концентрационного кальциевого сигнала в цитозоле

Параметры связывающих кальций буферов и флуоресцентного красителя Параметри буферів та флуоресцентного барвника, що зв'язують кальцій

Вещество	Константа скорости связывания, мМ · мс ⁻¹	Константа скорости распада, мс ⁻¹	Концентрация, мМ
Парвальбумин [В ₁]	6	0.9*10 ⁻³	0.54
Кальмодулин [B ₂]	100	0.1	0.03
Fura-4F [D]	120	0.12	0.3

Р и с. 2. Сравнение влияний относительной наполненности дендритного компартмента различными депо – митохондриями (A–B) или эндоплазматическим ретикулумом – ЭР (Γ –E) – на динамику уровня Ca²⁺ при идентичной интенсивности возбуждающей синаптической активации (2 нС).

А, *Г* – изменения во времени (мс) мембранного потенциала (мВ), *Б*, *Д* – внутриклеточной концентрации Ca²⁺ (мкМ), *B*, *E* – концентрации Ca²⁺ в митохондрии и ЭР соответственно (мкМ). Графики *1–6* соответствуют заполнению органельными депо различных долей (1, 4, 9, 16, 25 или 36 %) общего объема компартмента.

Р и с. 2. Порівняння впливів відносного наповнення дендритного компартмента різними депо – мітохондріями (*A*–*B*) або ендоплазматичним ретикулумом (*Г*–*E*) – на динаміку рівня Ca²⁺ при ідентичній інтенсивності збуджуючої синаптичної активації (2 нС).

 $([Ca^{2+}]_i)$. В условиях же одинакового относительного заполнения в случае как митохондрий, так и ЭР кальциевые сигналы были практически одинаковыми с небольшими (порядка наномолей на литр) различиями при увеличении доли занятого органеллами объема свыше 25 % (рис. 2, *Б*, *Д*, *5*, *6*). Однако в данном случае концентрационные кальциевые ответы внутри митохондрий существенно отличались от таковых в ЭР как по интенсивности, так и по кинетике (ср. В и Е на рис. 2).

Кальциевые транзиенты в митохондриях и ЭР при вариации интенсивности и длительности цитозольного кальциевого сигнала. В следующей серии вычислительных экспериментов, результаты которой представлены на рис. 3, сравнивали динамику уровней Ca²⁺ при обмене этого иона с цитозо-

Р и с. 3. Сравнение динамики уровней Ca^{2+} в одинаковых дендритных компартментах с 36 %-ной наполненностью митохондриями (*A*–*B*) или эндоплазматическим ретикулумом (*Г*–*E*) при разных интенсивности и длительности «всплесков» цитозольной концентрации $[Ca^{2+}]_{,,}$ обусловленных одиночными возбуждающими синаптическими воздействиями равной интенсивности. *A*–*E* – то же, что и на рис. 2. Графики *I* идентичны графикам 6 на рис. 2 (исходное состояние). Графики 2 и 4 – ответы при пятикратно уменьшенной по сравнению с исходной интенсивности диффузии кальция в соседние области безорганельного цитозоля. Графики 3 и 4 – ответы при температуре 15 °C, более низкой, чем исходная (22 °C).

Р и с. 3. Порівняння динаміки рівнів Ca²⁺ в однакових дендритних компартментах з 36 %-вим наповненням мітохондріями (A-B) або ендоплазматичним ретикулумом ($\Gamma-E$) при різних інтенсивності й тривалості "сплесків" цитозольної концентрації [Ca²⁺]_, зумовлених поодинокими збуджуючими синаптичними діями рівної інтенсивності.

лем в случаях разной интенсивности и длительности цитозольного кальциевого сигнала. Сравнение проводили в условиях фиксированного 36 %-ного заполнения объема органельными депо. За основу для сравнения принимали электрические и концентрационные сигналы (1), идентичные зарегистрированным в предыдущей серии в тех же условиях (рис. 2, 6). Пятикратное уменьшение интенсивности диффузионного оттока Ca^{2+} , не сказываясь на электрических ответах (A, Γ , I, 2), приводило к пятикратному увеличению цитозольного концентрационного кальциевого ответа на предъявление того же синаптического стимула. При этом видимых различий между поведением моделей 1 и 2 не на-

Р и с. 4. Влияние связывания цитозольного Ca²⁺ с буфероподобным флуоресцентным красителем на электрические и концентрационные ответы, вызванные идентичной синаптической стимуляцией в одинаковых дендритных компартментах, которые содержат в себе митохондрии (*A*–*B*) или эндоплазматический ретикулум – ЭР (*Г*–*E*) в качестве депо.

 A, Γ – изменения во времени (мс) мембранного потенциала (мВ), E, \mathcal{A} – внутриклеточной концентрации Ca²⁺ (мкМ), B и E – концентрации Ca²⁺ в митохондрии и ЭР соответственно (мкМ). Графики I идентичны графикам на рис. 2 (исходное состояние), графики 2 – ответы в присутствии 300 мкМ красителя с кинетическими характеристиками, соответствующими красителю Fura-4F.

Р и с. 4. Вплив зв'язування цитозольного Ca²⁺ з буфероподібним флуоресцентним барвником на електричні та концентраційні відповіді, викликані ідентичною синаптичною стимуляцією в однакових дендритних компартментах, котрі вміщують мітохондрії (*A*–*B*) або ендоплазматичний ретикулум (*Г*–*E*) як депо.

блюдалось. Уменьшение температуры от 22 до 15 °C приводило к увеличению продолжительности и величины электрического ответа (A, Γ , 3, 4) за счет замедления кинетик активации и инактивации потенциалзависимых каналов плазматической мембраны. Соответственно увеличивалась и длительность кальциевого транзиента в цитозоле (E, Д, 3). Как и в предыдущем случае, пятикратное уменьшение интенсивности диффузии вызывало такое же увеличение цитозольной концентрации Ca^{2+} (*Б*, *Д*, 4), не затрагивая характеристик электрического ответа (*A*, *Г*, 3, 4). Таким образом, были получены четыре разных цитозольных сигнала: два низкоамплитудных и два высокоамплитудных, причем в каждой паре один – быстрый, а другой – медленный. Реакции митохондрий и ЭР на эти цитозоль-

Р и с. 5. Сравнение компонентов цитозольного концентрационного кальциевого сигнала (A, E, A, E) и соответствующих потоков обмена ионов ($B, \Gamma, \mathcal{X}, 3$) в одинаковых дендритных компартментах, позволяющее выявить различия кинетических характеристик депонирования Ca²⁺ в митохондриях ($A-\Gamma$) и эндоплазматическом ретикулуме (A-3).

А, *Б*, *Д*, *Е* – прирост или убыль количества Ca^{2+} в единице объема цитозоля под действием соответствующих приносящих или уносящих эти ионы потоков (*B*, *Г*, *Ж*, 3) (оси положительных или отрицательных ординат соответственно) как функции времени (ось абсцисс) после начала синаптического стимула. *A*, *Д* – прирост (*I*) и убыль (2) Ca^{2+} в результате обмена с внеклеточной средой и диффузии в соседние компартменты соответственно. Дисбаланс в пользу прироста очевиден при сравнении линий 2 на *Б* и *Е*. *Б*, *E* – цитозольный кальциевый сигнал (*I*) как результат прироста количества Ca^{2+} (2), обусловленного превышением поступления через плазмолемму, по сравнению с диффузионным оттоком и убылью (*3*), обусловленными депонированием. *B*, *Ж* – поток обмена Ca^{2+} между цитозольем и внеклеточной средой (*I*) и диффузионный поток (*2*), которые обусловливают соответственно прирост и убыль количества цитозольного Ca^{2+} , показанные линиями *I* и *2* на *A* и *Д*. *Г*, *Д* – алгебраическая сумма потока обмена Ca^{2+} через плазмолемму и диффузионного потока (*I*) и поток закачки в депо (2). График *I* – алгебраическая сумма графиков *I* и *2*, представленных на *B*, *Ж*.

Р и с. 5. Порівняння компонентів цитозольного концентраційного кальцієвого сигналу (A, E, D, E) і відповідних потоків обміну іонів ($B, \Gamma, \mathcal{K}, 3$) в однакових дендритних компартментах, яке дозволяє виявити відмінності кінетичних характеристик депонування Ca²⁺ у мітохондріях ($A-\Gamma$) та ендоплазматичному ретикулумі (D-3).

ные сигналы существенно различались. Интенсивность кальциевого сигнала в ЭР (E) при прочих равных условиях в несколько раз превышала таковую в митохондриях (B). Крутизна нарастания внутриорганельной концентрации Ca²⁺ в ЭР была приблизительно в два раза больше, чем в митохондрии. В отличие от того, что наблюдалось в митохондриях, нарастание концентрации Ca²⁺ в ЭР происходило почти линейно. Как в то, так и в другое депо Ca²⁺ «закачивался», если его цитозольная концентрация превышала базальный уровень на некоторую величину. По окончании цитозольного транзиента концентрация Ca²⁺ в депо медленно снижалась за счет высвобождения с характерными для митохондрий и ЭР скоростями.

Соответствие динамики комплекса Са²⁺ – краситель и свободного Ca²⁺ при различных депо. Как видно из рис. 4, добавление красителя (2) приводило к связыванию части внутриклеточного Ca²⁺ и соответственно снижало концентрацию свободного Ca²⁺ в цитозоле (с 7.69 или 7.66 до 6.91 или 6.88 мкМ в моделях с митохондриями или ЭР в качестве депо соответственно). Наблюдалось также изменение формы сигналов; в них появлялась характерная «полочка» (так называемая остаточная концентрация кальция) – фаза медленного спада, следовавшая за фазой быстрого спада основного транзиента. Пиковые концентрации кальция в депо менялись незначительно (3.19 и 11.2 мкМ соответственно), однако послестимульное снижение концентрации в ЭР заметно замедлялось.

Сравнительный анализ вклада различных потоков обмена в динамику [Ca²⁺]. Различия между депонирующими активностями митохондрий и ЭР после вызванного одиночным синаптическим действием «всплеска» концентрации цитозольного кальция наглядно проявлялись при сравнении графиков парциальных потоков и их интегралов (уравнение 10). Последние показывают, какое количество Ca²⁺ привнесено в единичный объем цитозоля или удалено из него соответствующими потоками или их комбинациями к данному моменту интервала наблюдения. Превалирующая часть Ca²⁺ поступает в «действующий» пул цитозоля посредством обмена с внеклеточной средой через плазмолемму (рис. 5, А, 1, Д, 1) и выносится оттуда посредством диффузии (А, 2, Д, 2). Данный факт свидетельствует о том, что именно эти общие для обеих моделей механизмы обеспечивали требуемую идентичность кальциевых транзиентов (рис. 5, Б, 1, Е 1; 2, Б, 6, Е, 6; 3, Б, 1, Д, 1), т. е. сходство входных концентрационных сигналов для депо того или иного типа $(A - \Gamma -$ митохондрии, $\mathcal{I} - 3 - \Im P$). И в том, и в другом случае (А и Д соответственно) к моменту окончания цитозольного кальциевого транзиента на 13-й мс (рис. 5, Б, І, Е, І) указанные механизмы обеспечивали соответственно добавление и удаление приблизительно по 1.4 мМ Ca²⁺ (более точно – 1.42 и 1.419 мМ через плазмолемму, а в результате диффузии – 1.417 и 1.407 мМ соответственно). Подобное сходство было обеспечено тем, что в обоих случаях потоки через плазматическую мембрану (пиковые значения 25.55 и 25.57 мМ/мс соответственно) и потоки диффузии (25.49 и 25.43 мМ/мс соответственно) были практически одинаковыми (рис. 5, В и Ж соответственно). При этом концентрационный дисбаланс составлял 2.78 мкМ в случае митохондрий и 11.66 мкМ в случае ЭР (рис. 5, Б, 2, Е, 2 соответственно). Указанные количества и были депонированы митохондриями и ЭР (рис. 5, Б, З, Е, З соответственно).

Потоки депонирования, направленные внутрь митохондрий и ЭР, существенно различались как по интенсивности, так и по временному течению (рис. 6, Г, 2, 3, 2). Поток в ЭР был более интенсивным (максимальное значение 0.5 мкМ/мс), начинался раньше и заканчивался позже, чем поток в митохондрии. Существенно по-разному складывался и баланс остальных потоков, т. е. алгебраическая сумма потоков обмена через плазмолемму и диффузии (рис. 6, Г, 1, 3, 1). В случае митохондрий наблюдались две фазы обмена – ранняя, в течение которой преобладало направление внутрь цитозоля, и поздняя, противоположной направленности. В случае ЭР после второй фазы (преобладающее направление – из цитозоля) возникала третья, в течение которой суммарный поток небольшой интенсивности вновь направлялся в цитозоль. У моделей с депо разных типов существенно различались также ранние фазы суммарного потока в цитозоль: в них наблюдались по-разному выраженные ранние и поздние пики. Соотношение этих пиков зависело от более тонких соотношений парциальных потоков через плазмолемму и диффузии. Детальное изучение данного аспекта требует дополнительных вычислительных экспериментов с вариацией параметров обменных механизмов, что выходило за рамки основных задач настоящей работы.

обсуждение

Представленные выше результаты дают следующие ответы на основные вопросы, ставившиеся перед данным модельным исследованием.

Во-первых, получены дополнительные свидетельства того, что наполненность объема субклеточной структуры (особенно малоразмерной, такой, например, как тонкие дендритные стволы, шипики или синаптические бутоны) митохондриями, подобно наполнению другим органельным депо – ЭР (рис. 2) [31], является существенным структурным фактором, способным в значительной мере модулировать динамику [Са²⁺] во всех частях указанной структуры. Эта структурозависимость может адекватно отображаться в случае использования кальцийчувствительного флуорофора. Близкое подобие изменений кальциевых сигналов при изменении относительного субклеточного объема, заполненного депо как одного, так и другого типа (ср. рис. 2, Б и Д), позволяет распространить вывод, сделанный ранее [31] в отношении ЭР-депо, и на митохондрии. Пиковые значения быстрых цитозольных кальциевых транзиентов, развивающихся в ответ на одиночную синаптическую активацию, обратно пропорциональны величине объема безорганельного цитозоля.

Во-вторых, сравнительный анализ динамики обмена Са²⁺ между цитозолем, с одной стороны, и митохондриями или ЭР – с другой, позволил конкретизировать различия, обусловленные неодинаковой кинетикой ионообменных механизмов у этих двух депонирующих органелл. Регистрация кальциевых транзиентов, которые развиваются в ответ на активацию одиночного синапса, контактирующего с малыми клеточными компартментами, в натурном эксперименте сама по себе представляет достаточно трудную задачу. Трудности, естественно, усугубляются, если при этом необходимо выявить различия таких транзиентов в компартментах, содержащих в себе кальциевые депо разного типа. Модели, которые позволяют рассчитывать составляющие транзиента, связанные с разными потоками, открывают возможности не только наглядно представить указанные различия, но и соотнести их с действием конкретных обменных механизмов, характерных для разных депо. В наших вычислительных экспериментах обнаружились особенно заметные различия между скоростями депонирования кальция. Процесс «закачки» Са²⁺ в депо – это химическая реакция, скорость которой, согласно

закону действующих масс, пропорциональна количеству реагентов. Данная скорость при стандартизованных концентрационных сигналах (изменениях [Са²⁺]) на входе депо и одинаковых соотношениях поверхность обмена/объем цитозоля и депо определяется относительным количеством (концентрацией, поверхностной плотностью) насосных молекул в мембране депо. В нашем примере ЭР, реагируя на одинаковые всплески $[Ca^{2+}]$ (рис. 5, *Б*, *1*, E, I), за одно и то же время откачивает из цитозоля приблизительно в четыре раза большее количество Са²⁺ (уровень нулевого наклона графиков; Б, 3. Е. 3). чем митохондрии (E), занимающие такую же часть объема компартмента. Это происходило благодаря значительно большей скорости депонирования кальция в ЭР (угол наклона графика; Е, 3). Еще одно заметное отличие состояло в том, что в пределах значительной части длительности транзиента [Ca²⁺], поток обмена с ЭР (3, 2) после первоначального роста удерживался приблизительно на одном уровне и переходил в фазу спада после снижения цитозольной концентрации до определенного значения. У потока же обмена с митохондриями $(\Gamma, 2)$ фаза нарастания непосредственно переходила в фазу спада. Как следствие, количество депонированного Ca²⁺, приносимое относительно постоянным потоком, со временем увеличивалось в ЭР линейно, а в митохондрии – нелинейно (ср. рис. 3, В и Е). Вероятной причиной этих различий является то, что при одних и тех же уровнях цитозольной концентрации [Ca²⁺], молекулярные транспортные системы у ЭР находятся в состоянии, близком к насыщению, и не насыщены у митохондрий. Насыщение же транспортных систем и определяет максимальную скорость транспорта (переноса) Ca²⁺ в депо – тем бо́льшую, чем больше количество транспортных молекул в мембране органеллы. Для более точной количественной характеристики наблюдаемых различий и соотнесения их с конкретными параметрами механизмов депонирования требуется более детальное исследование, в котором тестировались бы вариации параметров указанных механизмов в физиологически обоснованных пределах. Однако это выходит за рамки задач настоящей работы и может быть выполнено в дальнейшем.

Возможности и ограничения моделей. В данной работе особое внимание уделялось сравнению кинетики обмена Ca²⁺ между цитозолем и различными видами депо – митохондрией или цистерной ЭР. Для этого требовалась минимизация различий концентрационных сигналов, активирующих процессы депонирования у разных органелл. Выполнение такого требования является трудной задачей не только для натурного, но и для модельного исследования. Подход, предложенный и реализованный в наших моделях, позволил решить эту задачу. При фиксированных параметрах ионных механизмов плазматической мембраны практически идентичные концентрационные сигналы внутри клетки были получены путем увеличения диффузионного потока Ca²⁺ из исследуемой субклеточной структуры в соседние области. Ограничением указанного подхода является меньшая выраженность тех деталей цитозольных транзиентов, которые непосредственно управляются потоками депонирования. Однако открывающиеся при этом возможности сопоставления потоков захвата и выброса Са²⁺, а также сравнения вполне отчетливо выраженных концентрационных транзиентов Ca²⁺ внутри депо компенсируют такой недостаток. В результате данные модели позволяют получить наглядное представление о динамическом отношении «вход-выход», т. е. о передаточной функции системы «цитозоль-депо» как физиологической подсистемы регулирования количества Ca²⁺ внутри клетки ([Ca²⁺].).

Видимо, заслуживает также внимания использованный в нашей работе подход к исследованию динамических концентрационных процессов путем управления интенсивностью и временны́м течением входных концентрационных сигналов за счет изменения параметров, не относящихся непосредственно к свойствам депо. Так, вариация температуры, влияющая на кинетику активации/инактивации каналов плазматической мембраны, позволяла ускорять или замедлять мембранные электрические процессы и ход кальциевых транзиентов. Амплитуда «всплеска» [Ca²⁺], при этом оставалась неизменной и определялась интенсивностью диффузионного потока Ca²⁺ из «действующего» пула в безорганельный объем цитозоля - она увеличивалась с уменьшением интенсивности диффузии. Таким образом, температура определяет длительность концентрационного кальциевого «импульса», тогда как диффузия - его амплитуду. В свою очередь, исследованные депо специфически реагируют на величину и временные характеристики транзиентов. Наблюдаемые в таких вычислительных экспериментах различия кинетик обмена Ca²⁺ между цитозолем и депо разного типа, в частности большие интенсивность и скорость изменения концентрационного кальциевого сигнала в ЭР по сравнению с соответствующими параметрами в митохондриях, могут служить свидетельством преимущественной роли ЭР в депонировании внутриклеточного Ca^{2+} , тогда как для митохондрий основными функциями остаются прежде всего энергетический метаболизм и дыхательные процессы клетки. Порядок значений концентраций, однако, подтверждает тот факт, что митохондрии также существенно вовлечены в депонирование Ca^{2+} .

Перспективы развития подобных моделей – это их адаптация к более сложным клеточным структурам (вплоть до реконструированных нейронов), применение более сложных протоколов стимуляции клетки (например, тестирование эффектов множественных импульсов), а также усложнение (приближение к реальной геометрии) самих внутриклеточных депо. Данные модели могут быть использованы для дальнейшего более подробного анализа связи концентрационных процессов и структурных характеристик депо. Этот аспект по сей день далек от понимания из-за ограниченных возможностей натурного эксперимента и существующего аппарата математического моделирования.

Области возможного использования результатов моделирования. Результаты настоящей работы дополняют данные, полученные ранее на моделях субклеточных структур, которые включают в себя ЭР в качестве депо [31], и могут быть полезны для более глубокого понимания влияний пространственных и кинетических факторов на динамику Ca²⁺ в условиях структурных изменений на субклеточном уровне. Так, изменения морфологии митохондрий описаны при многих нейродегенеративных и психических заболеваниях. Очевидно, что обеспечение нормального функционирования нейронов возможно лишь в случаях адекватного состояния данных субклеточных структур [22]. Митохондрии, как и ЭР, – органеллы с динамической морфологией. Для них характерны слияние, деление, ветвление и изменения в субклеточном распределении [23-25]. Это обусловливает межмитохондриальный обмен генетическими материалами и возможности существенной перестройки формы митохондрий, увеличения либо уменьшения их количества [23-25]. Количество и относительный объем митохондрий увеличиваются вследствие их расщепления во время клеточного деления, роста и дифференциации [26]. Эти динамические свойства структуры митохондрий критически влияют на процессы выработки энергии указанными органеллами, характеристики депонирования в них Са²⁺ и процессы управления апоптозом. Следует учиты-

вать, что чрезмерное расщепление митохондрий может стимулировать апоптоз [27] и являться фактором развития нейродегенеративных заболеваний [28]. На культивируемых здоровых нейронах показано, что процессы расщепления и слияние митохондрий регулируют морфологию и пластичность дендритных шипиков и синапсов [29]. Более того, воздействия глутаматом [30] и синаптическая активация [29] модулируют подвижность митохондрий и баланс между их расшеплением и объединением, а также контролируют их распределение в дендритах. Все описанные выше морфологические перестройки в зависимости от их масштабов могут оказывать большее или меньшее, но в любом случае заметное модулирующее влияние на интенсивность кальциевых сигналов. Данный аспект может быть предметом исследований с использованием представленных в нашей работе моделей и подходов.

Т. С. Новородовська¹, С. М. Корогод¹

ПОРІВНЯЛЬНИЙ МОДЕЛЬНИЙ АНАЛІЗ КАЛЬЦІЄВОГО ОБМІНУ МІЖ ЦИТОЗОЛЕМ І ДЕПО МІТОХОНДРІЙ АБО ЕНДОПЛАЗМАТИЧНОГО РЕТИКУЛУМА

¹ Дніпропетровський національний університет ім. Олеся Гончара (Україна).

Резюме

Об'єктом дослідження були однокомпартментні математичні моделі, відповідні фрагменту дендрита нейрона Пуркін'є мозочка, котрий вміщував мітохондрії (модель 1) або цистерну ендоплазматичного ретикулума – ЕР (модель 2) як кальцієві депо. Досліджували залежність динаміки рівнів внутрішньоклітинного Са²⁺ від співвідношення геометричних розмірів частин внутрішньоклітинного простору, що обмінюються кальцієм, і відмінності кінетичних характеристик депонування Ca²⁺ різними депо, котрі займають різні частини об'єму компартмента. Плазматична мембрана компартмента мала характерні для згаданих нейронів іонні канали, у тому числі канали, що забезпечували збуджуючий синаптичний струм, та кальцієвий насос. Рівняння моделей враховували обмін Ca²⁺ між цитозолем, позаклітинним середовищем, органельними депо, неорганельними ендогенними буферами та екзогенним буфером (флуоресцентним барвником), а також дифузію Са²⁺ у прилеглі ділянки дендрита. У моделі 1 мітохондрії обмінювалися Ca²⁺ з цитозолем через уніпортер і натрій-кальцієвий обмінник; враховувалися також такі мітохондріальні процеси, як цикл трикарбонових кислот та аеробне клітинне дихання. У моделі 2 мембрана ЕР мала кальцієвий насос, канали витоку та канали кальційіндукованого та інозитол-3-фосфатзалежного вивільнення Ca²⁺. Збільшення частки депо в загальному об'ємі компартмента від 1 до 36 % призводило до пропорційного приросту пікових значень цитозольних концентрацій кальцію ([Са²⁺]); відповідно збільшувалась і концентрація Ca²⁺ у мітохондрії $([Ca^{2+}]_{mit})$ або ЕР $([Ca^{2+}]_{ER})$. За час генерації в цитозолі однакових за інтенсивністю та тривалістю колоколоподібних кальцієвих сигналів ЕР завдяки більш високій швидкості депонування був здатний поглинути в декілька разів більше Са²⁺, ніж мітохондрії (у чотири рази при 36 %-вому заповненні об'єму органелами). Робиться припущення, що виявлені відмінні кінетичні характеристики депонування Ca²⁺ різними органелами зумовлені швидкостями реакцій зв'язування з наявними в мембрані депо транспортними молекулами, а отже, зумовлюються концентраціями (поверхневими щільностями) цих молекул та їх насиченням при певних рівнях [Ca²⁺]. Показано, що наповнення внутрішньоклітинного об'єму органельними депо будь-якого типу є структурним фактором, здатним істотно модулювати значення концентрації Са²⁺.

СПИСОК ЛИТЕРАТУРЫ

- 1. P. G. Kostyuk and A. Verkhratsky, *Calcium Signalling in the Nervous System*, Wiley, Chichester (1995).
- M. J. Brridge, "Neuronal calcium signalling," *Neuron*, 21, No. 1, 13-26 (1998).
- 3. Calcium as a Cellular Regulator, E. Carafli and C. Klee (eds.), Oxford Univ. Press, New York (1999).
- L. D. Pzzo-Miller, J. A. Connor, and S. B. Andrews, "Microheterogeneity of calcium signalling in dendrites," J. Physiol., 525, 53-61 (2000).
- P. Volpe, A. Nori, A. Martini, et al., "Multiple/heterogeneous Ca²⁺ stores in cerebellum Purkinje neurons," *Comp. Biochem. Physiol. Comp. Physiol.*, **105**, No. 2, 205-211 (1993).
- C. A. Ross, J. Meldolesi, T. A. Milner, et al., "Inositol 1,4,5trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons," *Nature*, **339**, No. 6224, 468-470 (1989).
- K. Takei, G. A. Mignery, E. Mugnaini, et al., "Inositol 1,4,5trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells," *Neuron*, 12, 327-342 (1994).
- A. Verkhratsky, "Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons," *Physiol. Rev.*, 85, 201-279 (2005).
- M. Montero, M. Brini, R. Marsault, et al., "Monitoring dynamic changes in free Ca²⁺ concentration in the endoplasmic reticulum of intact cells," *J. EMBO*, 14, 5467-5475 (1995).
- M. J. Barrero, M. Montero, and J. Alvarez, "Dynamics of [Ca²⁺] in the endoplasmic reticulum and cytoplasm of intact HeLa cells: a comparative study," *J. Biol. Chem.*, 272, 27694-27699 (1997).
- S. Leo, K. Bianchi, M. Brini, and R. Rizzuto, "Mitochondrial calcium signalling in cell death," *J. FEBS*, 272, No. 16, 4013-4022 (2005).
- R. Rizzuto, C. Bastianutto, M. Brini, et al., "Mitochondrial Ca²⁺ homeostasis in intact cells," J. Cell. Biol., **126**, 1183-1194 (1994).
- M. Montero, M. T. Alonso, E. Carnicero, et al., "Chromaffincell stimulation triggers fast millimolar mitochondrial Ca²⁺

transients that modulate secretion," Nat. Cell. Biol., 2, 57-61 (2000).

- R. Rizzuto and T. Pozzan, "Microdomains of intracellular Ca²⁺: molecular determinants and functional consequences," *Physiol. Rev.*, 86, No. 1, 369-408 (2006).
- N. B. Pivovarova, J. Hongpaisan, S. B. Andrews, et al., "Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics," J. Neurosci., 19, 6372-6384 (1999).
- 16. K. T. Baron, G. J. Wang, R. A. Padua, et al., "NMDA-evoked consumption and recovery of mitochondrially targeted aequorin suggests increased Ca²⁺ uptake by a subset of mitochondria in hippocampal neurons," *Brain Res.*, **993**, 124-132 (2003).
- T. J. Collins, M. J. Berridge, P. Lipp, et al., "Mitochondria are morphologically and functionally heterogeneous within cells," *J. EMBO*, 21, No. 7, 1616-1627 (2002).
- T. J. Collins and M. D. Bootman, "Mitochondria are morphologically heterogeneous within cells," *J. Exp. Biol.*, 206, No. 12, 1993-2000 (2003).
- T. J. Collins, P. Lipp, and M. J. Berridge, "Mitochondrial Ca²⁺ uptake depends on the spatial and temporal profile of cytosolic Ca²⁺ signals," J. Biol. Chem., 276, 26411-26420 (2001).
- E. J. Kaftan, T. Xu, R. F. Abercrombie, et al., "Mitochondria shape hormonally induced cytoplasmic calcium oscillations and modulate exocytosis," *J. Biol. Chem.*, 275, 25465-25470 (2000).
- R. M. Drummond, T. Mix, R. A. Tuft, et al., "Mitochondrial Ca²⁺ homeostasis during Ca²⁺ influx and Ca²⁺ release in gastric myocytes from Bufo marinus," *J. Physiol.*, **522**, 375-390 (2000).
- Q. A. Liu and H. Shio, "Mitochondrial morphogenesis, dendrite development and synapse formation in cerebellum require both Bcl-w and the glutamate receptor d2," *PLoS Gen.*, 4, No. 6, 1-13 (2008).
- V. Y. Polyakov, M. Y. Soukhomlinova, and D. Fais, "Fusion, fragmentation, and fission of mitochondria," *J. Biochem.*, 68, 838-849 (2003).
- K. Okamoto and J. M. Shaw, "Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes," *Annu. Rev. Gen.*, 39, 503-536 (2005).
- D. C. Chan, "Mitochondrial fusion and fission in mammals," Annu. Rev. Cell. Dev. Biol., 22, 79-99 (2006).
- 26. B. Alberts, A. Johnson, J. Lewis, et al., "Molecular biology

of the cell," GS Garl. Sci. Taylor Francis Gr., 4, 808-821 (2002).

- 27. R. J. Youle and M. Karbowski, "Mitochondrial fission in apoptosis," Nat. Rev. Mol. Cell Biol., 6, 657-663 (2005).
- E. Bossy-Wetzel, M. Barsoum, A. Godzik, et al., "Mitochondrial fission in apoptosis, neurodegeneration and aging," *Current Opin. Cell Biol.*, 15, 706-716 (2003).
- Z. Li, K. I. Okamoto, Y. Hayashi, et al., "The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses," *Cell*, **119**, 873-887 (2004).
- G. L. Rintoul, A. J. Filiano, J. B. Brocard, et al., "Glutamate decreases mitochondrial size and movement in primary forebrain neurons," *J. Neurosci.*, 23, 7881-7888 (2003).
- 31. С. М. Корогод, Т. С. Новородовська, "Вплив геометричних характеристик органельного депо та безорганельного цитозоля на динаміку рівнів внутрішньоклітинного кальцію в дендриті: модельне дослідження", Нейрофизиология/ Neurophysiology, 41, № 1, 19-31 (2009).
- I. B. Kulagina, S. M. Korogod, G. Horcholle-Bossavit, et al., "The electro-dynamics of the dendritic space in Purkinje cells of the cerebellum," *Arch. Ital. Biol.*, 145, Nos. 3/4, 211-233 (2007).
- 33. I. B. Kulagina, "Phase relationship between calcium and voltage oscillations in different dendrites of Purkinje neuron," *Нейрофизиология/Neurophysiology*, 40, № 5/6, 477-485 (2008).
- 34. N. T. Carnevale and M. L. Hines, *The NEURON Book*, Cambridge Univ. Press, Cambridge (2006).
- 35. E. De Schutter and P. Smolen, "Calcium dynamics in large neuronal models," in: *Methods in Neuronal Modeling: from Ions to Networks*, C. Koch and I. Segev (eds.), MIT Press, Cambridge (1998), pp. 211-250.
- 36. S. Dargan, B. Schwaller, and I. Parker, "Spatiotemporal patterning of IP3-mediated Ca²⁺ signals in *Xenopus* oocites by Ca²⁺-binding proteins," *J. Physiol.*, **556**, No. 2, 447-461 (2004).
- D. L. Wokosin, C. M. Loughrey, and G. L. Smith, "Characterization of a range of Fura dyes with two-photon excitation," *Biophys. J.*, 86, No. 3, 1726-1738 (2004).
- J. B. Sorensen, U. Matti, S. H. Wei, et al., "The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis," *Proc. Natl. Acad. Sci. USA*, 99, No. 3, 1627-1632 (2002).
- 39. S. Cortassa, M. A. Aon, E. Marban, et al., "An intergrated model of cardiac mitochondrial energy metabolism and calcium dynamics," *J. Biophys.*, **84**, 2734-2755 (2003).