УДК 575.11.113:633.16

О.Р. СТРАТУЛА, Ю.М. СИВОЛАП

Южный биотехнологический центр в растениеводстве Украинской академии аграрных наук и Министерства образования и науки Украины, Одесса, Овидиопольская дор., 3 E-mail: genom2005@ukr.net

АЛЛЕЛЬНЫЕ ХАРАКТЕРИСТИКИ ГЕНА β-АМИЛАЗЫ СОРТОВ ЯЧМЕНЯ УКРАИНЫ

Сорта сельскохозяйственных растений традиционно характеризуют описанием морфологических признаков совместно с биохимическими показателями. В настоящее время эти данные могут быть дополнены благодаря ДНК-технологиям, которые позволяют использовать молекулярно-генетические маркеры, генерируемые в результате ПЦР. Маркеры аллелей генов, кодирующих экономически важные признаки (активность β-амилазы), могут использоваться для ускорения селекционного процесса путем контроля за растениями, несущими нужный аллель, на ранних этапах селекции. Изучен аллельный состав 99 сортов ярового и озимого ячменя пивоваренного, зернового и ценного направлений использования. Приведены данные ПЦР-анализа с использованием ДНКмаркера к гену β-амилазы и показано, что сорта ячменя могут состоять из генотипов с различными аллелями гена β-ату 1.

Введение. Одной из важных проблем современного растениеводства является идентификация сортов и характеристика аллельного состояния генов, кодирующих хозяйственно ценные признаки. Идентификация и определение генетической однородности сортов ячменя имеет большое значение для повышения эффективности технологических процессов переработки продукции, в частности, при изготовлении солода и пива. Определение сортов традиционно базируется на анализе морфологических признаков, дополненных характеристикой биохимических показателей изоэнзимов и запасных белков гордеинов [1]. Развитие молекулярной генетики, в частности ДНК-технологий, позволило использовать молекулярно-генетические маркеры, генерируемые в результате полимеразной цепной реакции (ПЦР). Создана база данных ДНК-типирования сортов ячменя на основе анализа 20 микросателлитных маркеров, в которой уникально дифференцированы сорта, и аллельный состав анализируемых локусов отражен в виде генетических формул [2]. В перспективе эти данные будут дополняться показателями локусов (генов), кодирующих экономически важные признаки. Маркеры аллелей могут использоваться для характеристики популяционного состава сорта с целью создания линейных сортов, соответствующих европейским и мировым стандартам однородности.

Современные пивоваренные сорта ячменя должны отвечать ряду требований, в том числе и по комплексу солодовых свойств. Качество солода является результатом гидролитической активности амилолитических ферментов (так называемая диастатическая сила), важнейшим из которых является β-амилаза, гидролизующая крахмал с образованием мальтозы и декстринов [3, 4]. Активный фермент позволяет получить большее количество мальтозы (сахар, способный к брожению) до того, как под воздействием температуры, необходимой для приготовления сусла, β-амилаза начнет деградировать [5]. Взаимозависимости между процентным содержанием крахмала и активностью βамилазы у сортов ячменя не выявлено [6].

Эндоспермальная β -амилаза кодируется геном β -аму1, который локализован на длинном плече хромосомы 4H. Интрон III-специфический участок этого гена может использоваться как качественный маркер при ПЦР для выявле-

ния трех β-амилазных аллелей с помощью специфических праймеров [7], что может обеспечить ценный механизм отбора, который могбы использоваться для предсказания диастатической силы в ячмене на стадии проростка.

Основываясь на известных пивоваренных качествах сортов ячменя и опубликованных данных об их диастатической силе, можно утверждать, что сортам с хорошими пивоваренными свойствами и, соответственно, имеющим высокоактивную β-амилазу присущ аллель (ПЦР-фрагмент) 516 п.н., тогда как непивоваренные сорта (низкая активность β-амилазы) имели 643 п.н. ПЦР-фрагмент. Третий, 477 п.н. ПЦР-фрагмент, связанный с наиболее высокими показателями активности β-амилазы и обнаруженный в ряде форм *Hordeum spontaneum*, не найден в зерне известных сортов культурного ячменя [3].

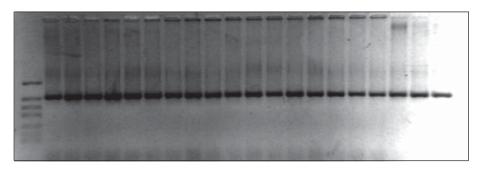
Цель нашей работы заключалась в исследовании полиморфизма локуса β -ату l в сортах ячменя, зарегистрированных в Украине.

Материалы и методы. Материалом для исследования служили 99 (78 яровых и 21 озимый) сортов ячменя, зарегистрированных в Украине. В табл. 1—3 приведены характеристики исследуемых сортов — их происхождение и разделение по каталогу на пивоваренные, зерновые и ценные.

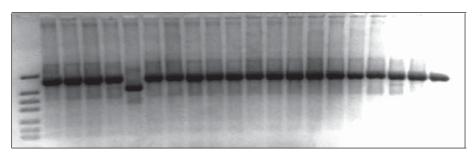
ДНК выделяли из пятидневных этиолированных проростков с помощью цетавлона В (СТАВ). Для каждого сорта проводили выделение ДНК из 20 индивидуальных проростков. Количество ДНК определяли с использованием ДНК-флюориметра («Hoefer», США).

Интрон III-специфическую последовательность гена β -ату l амплифицировали из геномной ДНК различных сортов ячменя.

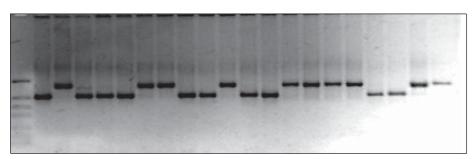
ПЦР проводили с 20 образцами каждого сорта. Реакционная смесь для ПЦР объемом 20 мкл содержала: 50 мМ КСl, 20 мМ Tris-HCl рН 8,4 (25 °C), 3 мМ MgCl₂, 0,01 % Tween 20, 5 %-ный глицерин, по 0,15 мМ каждого dNTP, 0,2 мкМ каждого праймера, 100 нг ДНК и 1 ед. Таq-полимеразы.


Для ПЦР применяли следующий температурный режим: начальная денатурация — 1,5 мин при 94 °C, денатурация — 30 с при 94 °C, отжиг — 40 с при 60 °C, элонгация — 1 мин при 72 °C, заключительная элонгация —

10 мин при 72 °C. Проводили 35 циклов амплификации. Для амплификации ДНК использовали приборы «Терцик» («ДНК-Технология», Россия).


Для тестирования продуктов амплификации использовали 2 %-ные агарозные гели с последующим окрашиванием бромистым этидием и фотографированием в УФ-свете на фотопленку «Микрат-300» (Россия). Документирование профилей ДНК на гелях проводили с помощью системы видеодокументации «Ітаде Master VDS» («Amersham Pharmacia Biotech», Австрия). Фотографирование окрашенных гелей производили цифровой видеокамерой. С помощью компьютерного обеспечения LISKAP цифровое видеоизображение продуктов разделения в геле переносили в компьютер.

Результаты исследований и их обсуждение. Анализ полученных результатов показал, что из 78 яровых сортов 41 оказался однородным по локусу β -ату 1, что составило 52 %. Внутрисортовая гетерогенность остальных яровых сортов варьировала в диапазоне от 5 до 50 % (табл. 1 и 2). У 21 озимого сорта наблюдали почти 100 %-ную гомогенность (табл. 3). Гетерогенные сорта различались по двум продуктам амплификации — 516 п.н. ПЦР-фрагменту, который связан с признаком высокой активности βамилазы в зерне, и 643 п.н. ПЦР-фрагменту, связанному с низкой β-амилазной активностью. Третий, 477 п.н. ПЦР-фрагмент, присущий формам с наиболее высокими показателями активности β -амилазы (некоторые формы H. spontaneum), в указанном наборе сортов культурного ячменя не обнаружен.


В табл. 1 представлены 54 сорта ячменя, заявленные в реестре как пивоваренные. Из них 31 сорт ячменя содержит аллели одного вида (рис. 1). При оценке внутрисортовой гетерогенности по локусу β -ату 1 выборки пивоваренных сортов Гетьман (рис. 2), Звершення, Каштан, Командор, Мироновский 92, Мишке, Незалежный, Олбрам (рис. 3), Пеяс, Пивденный, Подолян, Рось, Стяг, Тюрингия, Форум от 50 до 100 % содержали аллели низкоактивной β -амилазы (643 п.н. ПЦР-фрагмент). Из общего количества пивоваренных сортов ячменя 32 сорта были украинской селекции — 56 % этих сортов были гетерогенными по локусу β -ату 1.

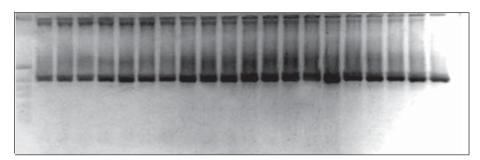

Рис. 1. Электрофореграмма однородного пивоваренного сорта Оболонь (100 % аллелей активной β -амилазы)

Рис. 2. Электрофореграмма гетерогенного пивоваренного сорта Гетьман (95 % аллелей неактивной β -амилазы)

Рис. 3. Электрофореграмма гетерогенного пивоваренного сорта Олбрам (50 % аллелей неактивной β -амилазы)

Рис. 4. Электрофореграмма гомогенного зернового сорта Галатея (100 % аллелей активной β -амилазы)

Таблица 1 Оценка внутрисортовой гетерогенности по локусу β -ату 1 у пивоваренных сортов ярового ячменя

	Оригинатор	Частота встречае-		
Cont		мости генотипов,		
Сорт		п.н.		
		643	516	477
	П	0.2	0.7	
Амулет	Чехия	0,3	0,7	0
Анабель	Германия	0	1	0
Андриен	Нидерланды	0,95	0,05	0
Аскольд	Украина (МИП)	0	1	0
Бадьорий	Украина (ИР)	0,15	0,85	0
Вакула	Украина (СГИ)	0	1	0
Галактик	Украина (СГИ)	0	1	0
Гелиос	Украина (СГИ)	0	1	0
Гетьман	Украина (СГИ)	0,95	0,05	0
Гонар	Белоруссия	0	1	0
Джерело	Украина (ИР)	0,1	0,9	0
Европрестиж	Бельгия	0	1	0
Жозефин	Франция	0	1	0
Зоряный	Украина (СГИ)	0,1	0,9	0
Звершення	Украина (ИР)	0,6	0,4	0
Казковый	Украина (СГИ)	0	1	0
Каштан	Украина (ИР)	0,95	0,05	0
Командор	Украина (СГИ)	1	0	0
Корона	Украина (МС)	0,25	0,75	0
Мареси	Германия	0,2	0,8	0
Марина	Германия	0	1	0
Мироновский 92	Украина (МС)	0,95	0,05	0
Мироновский 86	Украина (МС)	0,3	0,7	0
Мишке	Франция	1	0	0
Невада	Франция	0	1	0
Незалежный	Украина (СГИ)	0,95	0,05	0
Одесский 100	Украина (СГИ)	0	1	0
Одесский 115	Украина (СГИ)	0,05	0,95	0
Одесский 115 (2n)		0,05	0,95	0
Олбрам	Чехия	0,5	0,5	0
Оболонь	Украина (СГИ)	0	1	0
Пасадена	Нидерланды	0	1	0
Пеяс	Чехия	1	0	0
Пивденный	Украина (СГИ)	0,95	0,05	0
Подольский 14	Украина (СГИ)	0,55	1	0
	Украина (ВС)	0,75	0,25	0
Подолян Прима Бело-	Белоруссия	0,75	0,25	0
руссии	Вслоруссия	0,03	0,93	U
	Шрания	0	1	0
Роланд	Швеция	1		0
Рось	Украина (СГИ)		0	
Скориот	Украина (СГИ)	0	1	0
Скарлет	Чехия	0	1	0
Спомин	Украина (СГИ)	0,15	0,85	0
Стяг	Украина (НАУ)	0,9	0,1	0
Табора	Франция	0	1	0
Толар	Чехия	0	1	0

		<u> </u>		
Сорт	Оригинатор	Частота встречае- мости генотипов, п.н.		
		643	516	477
Тюрингия	Германия	1	0	0
Филадельфия	Германия	0	1	0
Форум	Чехия	1	0	0
Харьковский 112	Украина (ИР)	0,05	0,95	0
Целинка	Франция	0	1	0
Чаривный	Украина (СГИ)	0	1	0
Чудовый	Украина (СГИ)	0	1	0
Эдем	Украина (СГИ)	0,15	0,85	0
Экзотик	Украина (ИР)	0	1	0

Таблица 2 Оценка внутрисортовой гетерогенности по локусу *β-ату1* у ценных и зерновых сортов ярового ячменя

Сорт	Оригинатор	Частота встречаемости генотипов, п.н		
		643	516	477
Адапт	Украина (СГИ)	0,05	0,95	0
Водограй	Украина (СГИ)	0,4	0,6	0
Галатея	Украина (СГИ)	0	1	0
Гама	Украина (ИР)	0,95	0,05	0
Днепровский 257	Украина (ДОН)	0,4	0,6	0
CH-28	Украина (КИС)	1	0	0
Дерибас	Украина (СГИ)	0,9	0,1	0
Донецкий 9	Украина (ДОН)	0,7	0,3	0
Донецкий 12	Украина (ДОН)	1	0	0
Донецкий 14	Украина (ДОН)	0,8	0,2	0
Зерноградский 385	Россия	0,2	0,8	0
Карат	Украина (ВИАВ)	0,1	0,9	0
Лотос	Украина (ВС)	0,2	0,8	0
Надия	Украина (ИЗТ)	0	1	0
Неофит	Украина (ВИАВ)	0	1	0
Одесский 131	Украина (СГИ)	0,5	0,95	0
Одесский 151	Украина (СГИ)	1	0	0
Паллидум 107	Украина (СГИ)	0,8	0,2	0
Перелом	Россия	0,1	0,9	0
Переможный	Украина (СГИ)	0	1	0
Прерия	Украина (СГИ)	0,95	0,05	0
Сталкер	Украина (СГИ)	1	1	0
Феникс	Украина (ИР)	0	0	0
Эней	Украина (СГИ)	0	0	0

Из 24 сортов ячменя из табл. 2, относящихся согласно реестру к ценным и зерновым, 10 были моногенными по локусу β -ату 1. Сорта

Таблица 3 Оценка внутрисортовой гетерогенности по локусу β -ату 1 у сортов озимого ячменя

Сорт	Оригинатор	Частота встречаемости генотипов, п.н.		
		643	516	477
Аванс	Россия	1	0	0
Бемир 2	Украина (МС)	1	0	0
Буран	Украина (КС)	1	0	0
Вавилон	Россия	1	0	0
Козир	Россия	1	0	0
Кромоз	Чехия	1	0	0
Манас	Украина (СГИ)	1	0	0
Мироновский 87	Украина (МИП)	1	0	0
Михайло	Россия	1	0	0
Одесский 165	Украина (СГИ)	1	0	0
Одесский 167	Украина (СГИ)	1	0	0
Одесский 170	Украина (СГИ)	1	0	0
Онега	Украина (КС)	1	0	0
Основа	Украина (СГИ)	1	0	0
Паллидум 77	Украина (МС)	1	0	0
Радон	Украина (МС)	1	0	0
Секрет	Россия	1	0	0
Скороход	Россия	0,05	0,95	0
Тайна	Украина (СГИ)	1	0	0
Тамань	Украина (СГИ)	1	0	0
Циклон	Россия	1	0	0

Адапт, Водограй, Галатея (рис. 4), Днепровский 257, Зерноградский 385, Карат, Лотос, Надия, Неофит, Одесский 131, Перелом, Переможный, Сталкер содержали от 60 до 100 % аллелей высокоактивной β -амилазы (516 п.н. ПЦР-фрагмент).

Из 22 зерновых сортов украинской селекции 12 имели различные аллели β -амилазного гена, что составило 54 %.

В табл. 3 продемонстрированы результаты оценки внутрисортовой гетерогенности по локусу β -amy l у 21 сорта озимого ячменя. Они показали, что сорт Скороход на 95 % состоит из аллелей высокоактивной β -амилазы (516 п.н. ПЦР-фрагмент), остальные сорта были однородны по данному локусу и состояли только из аллелей неактивной β -амилазы (643 п.н. ПЦР-фрагмент). В Украине были созданы 13 озимых сортов, и все они оказались моногенными по локусу β -amy l.

В связи с полученными результатами и литературными данными о том, что активность β -амилазы является одним из важнейших параметров для пивоварения (диастатическая сила) [1, 4], можно утверждать, что не все сорта ячменя, названные пивоваренными, однородны по указанному признаку.

Известно, что корреляция между процентным содержанием крахмала и активностью β -амилазы в зерне ячменя отсутствует. Содержание белка, крахмала и активность β -амилазы в семенах ячменя зависят от генотипа растений [6]. Пример — сорт Надия (направление использования — зерновое), содержание белка в зерне — 10,6 %, при этом сорт на 100 % содержит аллели высокоактивной β -амилазы. Сорт Гонар (направление использования — пивоваренное), содержание в зерне белка — 12 %, крахмала — 59,8 %, а также 100%-ное содержание аллелей высокоактивной β -амилазы.

Использование маркера для отбора аллелей активной β-амилазы может ускорить селекционный процесс путем контроля на ранних этапах селекции в расщепляющейся популяции за растениями, несущими нужный аллель.

Система идентификации сортов ячменя по гену β -ату 1 может быть использована для пополнения каталога генотипов сортов, что позволит упорядочить имеющиеся в Украине сорта по данному признаку на пивоваренность.

Авторы приносят благодарность зав. отделом селекции ячменя СГИ акад. А.А. Линчевскому и директору Института экспертизы сортов Госслужбы по охране прав на сорта растений Украины канд. биол. наук А.Н. Гончару за предоставление семян сортов ячменя.

SUMMARY. Allelic diversity in a set of 99 spring and winter barley varieties for the different direction of use (brewing, cereal and valuable) has been studied studied. PCR analyses with β -amylase DNA-marker have shown that the genotypes of different barley varieties can include different alleles of β -AMYI gene.

РЕЗЮМЕ. Вивчили алельний склад 99 сортів ярого та озимого ячменю пивоварного, зернового та цінного напрямків використання. За даними ПЛР-аналізу з використанням ДНК-маркера до гена β -амілази показано, що сорти ячменю можуть складатися з генотипів з різними алелями гена β -аму 1.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Cullis B.R.*, *Smith A.B.*, *Panozzo J.F.*, *Linf P.* Barley malting quality: are we selecting the best? // Austral. J. Agr. Res. 2003. **54**. P. 1261–1275.
- Бальвинская М.С., Roder М., Сиволап Ю.М. SSRРанализ молекулярно-генетического полиморфизма сортов ярового ячменя южноукраинской селекции // Докл. Рос. академии с.-х. наук. 2001. № 5. С. 3—7.
- 3. Erkkila M., Leah R., Ahokas H., Cameron-Mills V. Allele-dependent barley grain β-amylase activity // Plant Physiol. 1998. 117. P. 679–685.
- 4. Fox G.P., Panozzo J.F., Li C.D., Lance R. CM., Inkerman P.A., Henry R.J. Molecular basis of barley quality // Austral. J. Agr. Res. 2003. 54. P. 1081–1101.

- Sjakste T., Roder M. Distribution and inheritance of βamylase alleles in north European barley varieties // Hereditas. – 2004. – 141. – P. 39–45.
- 6. Нуржанова А.А., Седловский А.И., Хакимжанов А., Сариев Б.С. Скрининг районированных сортов и перспективных форм пивоваренного ячменя по биохимическим параметрам, определяющим пивоваренные качества зерна // Актуальные проблемы генетики: Тез. докл. М., 2003. Т. 1. С. 182–183.
- Erkkila M. Intron III-specific markers for screening of β-amylase alleles in barley cultivars // Plant Mol. Biol. Rep. – 1999. – 17. – P. 139–147.

Поступила 11.05.06