УДК 631.526.3+582.282

ИЗМЕНЧИВОСТЬ КОМПОНЕНТНОГО СОСТАВА ЭФИРНОГО МАСЛА У РАСТЕНИЙ *ARTEMISIA BALCHANORUM* KRASCH., ИНФИЦИРОВАННЫХ РЖАВЧИННЫМ ГРИБОМ *PUCCINIA ABSINTHII* DC.

В.Д. РАБОТЯГОВ, В.П. ИСИКОВ, Н.С. ОВЧАРЕНКО

Никитский ботанический сад — Национальный научный центр Национальной академии аграрных наук Украины 98648 Ялта, пгт Никита, Автономная Республика Крым

У растений *Artemisia balchanorum*, инфицированных грибом *Puccinia absinthii*, идентифицировано 41 терпеновое соединение. По компонентному составу эфирного масла инфицированные и неинфицированные соцветия различались: количество мирцена в масле инфицированных растений уменьшалось по сравнению с неинфицированными в 1,8—2,3 раза, линалоола — увеличивалось до 25 %. Содержание геранилацетата и α-туйона в инфицированных соцветиях снижалось соответственно на 30—50 и 11—30 %, содержание β-туйона возрастало на 22—30 %.

Ключевые слова: Artemisia balchanorum Krasch., Puccinia absinthii DC., эфирное масло, биосинтез терпеноидов.

Вид *Artemisia balchanorum* Krasch. относится к семейству Asteraceae, насчитывающему около 100 видов. Описан в 1928 г. И.М. Крашенинниковым из сборов в горах Большие Балханы Туркменской ССР и назван полынью лимонной за характерный цитрусовый запах. Природный ареал ограничен Большими Балханами и Памиром [6]. По своим хозяйственно-ценным признакам и неприхотливости к условиям выращивания *A. balchanorum* является наиболее перспективным эфиромасличным растением для введения в культуру. Цитральное масло *А. balchanorum* (до 60 %) можно использовать наравне с эфирным маслом (ЭМ) кубебы и лемонграссовым для добывания из него цитраля [3, 9, 10].

В Никитском ботаническом саду *А. balchanorum* культивируется с 1954 г. Выделены высокопродуктивные сорта и формы этого растения с цитральным и гераниольным запахами, являющиеся важным сырьем для парфюмерно-косметической и пищевой промышленности. В условиях Южного берега Крыма *А. balchanorum* развивается как типичный полукустарник с моноциклическими однолетними побегами высотой до 80 см, диаметром куста от 40 см у прямостоящих форм, до 100 см — у раскидистых. Растения проходят полный цикл развития, обильно цветут и плодоносят. Начиная со второго года жизни, *А. balchanorum* формирует от 10 до 40 и более генеративных густо облиственных деревянистых у основания побегов. Листья длиной 3—5 см, дважды-трижды перисторассеченные, светло-зеленой, сизой и голубовато-серой окраски. Соцветие метельчатой формы, несет от 1000 до 4000 овально-продолговатых, густо или редко сидящих цветочных корзинок длиной 3—4 мм. Цветки дву-

полые, трубчатые, пятичленистые, в среднем в корзинке их шесть. Опыляются перекрестно ветром и насекомыми. *А. balchanorum* засухоустойчива, сравнительно зимостойка, нетребовательна к почвам, мало поражается болезнями и почти не повреждается насекомыми [5, 6, 10].

При фитопатологическом обследовании коллекционных насаждений *А. balchanorum* выявлены растения, инфицированные ржавчинным грибом *Puccinia absinthii* DC. В Крыму этот гриб развивается также на растениях *А. absinthium* L., *А. austriaca* Jacq., *А. dracunculus* L., *А. lerchiana* Weber. ex Stechm., *А. pontica* L., *А. taurica* Willd., *А. vulgaris* L. [2]. Он поражает листья, стебли, цветки, может существенно снижать выход семян этих видов, влиять на продуктивность ЭМ. Биогенез ЭМ у растений, инфицированных ржавчинным грибом *Puccinia absinthii*, неизвестен, поэтому необходимо изучить его компонентный состав у таких растений.

Методика

Исследования проводили в Никитском ботаническом саду в 2007—2008 гг. на семи сортоклонах A. balchanorum, выделенных из семенного потомства (местная репродукция) и вегетативно размноженных черенками. Возраст изучаемых растений — 3—5 лет. В фазу цветения надземную массу срезали, определяли выход ЭМ и его компонентный состав. В 2007 г. исследовали сортоклоны линалоольного типа: 7.8; 7-50; 4.2. В 2008 г. для определения биосинтеза терпеноидов были взяты три группы сортоклонов: цитрально-линалоольного типа (1,36; 1-50); линалоольно-цитрального (130), цитрального (1-92). С одного и того же растения (куста) для анализа отбирали соцветия неинфицированные и инфицированные ржавчиной. Массовую долю ЭМ в сырье определяли методом гидродистилляции в аппаратах Клевенджера [4, 5]. Качественный состав ЭМ исследовали на хроматографе «Agilent Technology 6890N» с масс-спектрометрическим детектором 5973N. Компоненты ЭМ идентифицировали по результатам поиска и сравнения полученных масс-спектров химических веществ, входящих в состав исследуемых смесей, с данными библиотеки масс-спектров NIST02 (более 174 000 веществ). Индексы удерживания компонентов рассчитывали по результатам контрольных анализов ЭМ с добавкой нормальных алканов (C_{10} — C_{18}) [11].

Результаты и обсуждение

До настоящего времени не выяснен вопрос, как влияет ржавчинный гриб на компонентный состав ЭМ. Известно, что многие его составляющие образуются не при распаде тех или иных веществ растений, а при их синтезе. Так, углеродные цепи гераниола, линалоола и других терпенов являются ключевыми биологически активными продуктами биосинтеза различных каротиноидов, ростовых веществ группы гиббереллинов и др. [1]. Возможность вовлечения в метаболизм терпеновых соединений — основных компонентов ЭМ — доказана и на примере микроорганизмов. Установлено, что в дрожжевой клетке цитраль восстанавливается до гераниола. Некоторые расы микроорганизмов группы *Penicillium* превращают цитронеллол и пулегол в ментол [8]. При селекции ароматических растений основной целью исследователя является получение сортов с определенным набором компонентов эфирного масла. Процесс отбора лучших форм растений может продолжаться многие годы. Поэто-

му изучение механизма биогенеза терпеновых соединений в эфирных маслах очень важно для возможного ускорения селекционного процесса. В связи с этим мы исследовали биохимический состав ЭМ растений *A. balchanorum*, инфицированных ржавчинным грибом *Puccinia absinthii*. В 2007 г. работы проводились только на сортоклонах линалоольного типа (табл. 1).

Хроматографическим анализом ЭМ идентифицировано 41 терпеновое соединение, что для исследуемых сортоклонов *A. balchanorum* составило 78—93 % массы цельного эфирного масла. От 7 до 22 % компонентов ЭМ в исследуемых образцах идентифицировать невозможно. Мы рассматривали 19 терпеновых соединений, определяющих тот или иной запах и содержащихся в относительно высоких количествах. Основными компонентами ЭМ изучаемых сортоклонов *А. balchanorum* являются мирцен, α-терпинен, 1,8-цинеол, линалоол, α- и β-туйоны, нераль, гераниол, гераниаль и геранилацетат. Сравнительным анализом ЭМ неинфицированных и инфицированных ржавчинным грибом соцветий установлено, что в инфицированных соцветиях содержание мирцена было в

ТАБЛИЦА 1. Компонентный состав эфирного масла из соцветий pacmeний Artemisia balchanorum, инфицированных ржавчинным грибом Puccinia absinthii (2007 г.)

Компонент	Время удержи-	Содержание компонента в ЭМ, % суммарного количества цельного масла						
		Сортоклон 7.8		Сортока	тон 7-50	Сортоклон 4.2		
	вания, мин	неинфи- цирован- ные	инфици- рованные	неинфи- цирован- ные	инфици- рованные	неинфи- цирован- ные	инфици- рованные	
Сабинен	7,14	0,56	0,78	0,55	0,68	0,56	0,61	
Мирцен	7,65	12,28	5,27	9,51	7,61	10,02	5,45	
α-Терпинен	8,41	1,28	0,59	0,53	0,59	1,07	0,40	
1,8-Цинеол	8,89	1,27	1,78	1,20	1,45	1,42	1,36	
Линалоол	11,29	24,82	30,01	25,93	32,63	23,26	26,30	
α-Туйон	11,38	9,63	11,80	10,00	13,06	9,99	11,06	
β-Туйон	11,73	3,45	4,29	3,88	4,71	3,48	4,19	
Туйиловый спирт	12,38	0,49	0,55	0,53	0,54	0,43	0,52	
Терпинен-4-ол	13,76	0,25	0,41	0,27	0,32	0,25	0,42	
α-Терпинеол	14,24	0,23	0,30	0,23	0,23	0,26	0,27	
Цитронеллол	15,63	0,38	0,30	0,50	0,21	0,34	0,28	
Нераль	15,96	11,18	11,54	11,60	10,07	11,83	11,22	
Гераниол	16,46	0,98	0,80	1,00	0,46	1,94	0,98	
Линалилацетат	16,69	0,23	0,24	0,31	0,30	0,19	0,20	
Гераниаль	16,97	12,73	12,79	12,74	10,35	13,06	13,10	
α-Терпинил- ацетат	17,61	1,35	1,34	1,75	1,74	0,88	1,27	
Геранилацетат	20,59	9,35	7,48	8,42	5,52	12,95	8,30	
Цис-жасмон	21,09	1,60	1,68	1,87	1,29	1,38	1,35	
Кариофиллен	21,66	0,31	0,35	0,38	0,36	0,26	0,28	

1,2-2,3 раза ниже и составляло 5,2-7,6 против 9,5-12,2 %; содержание такого ценного компонента, как линалоол в инфицированных соцветиях было на 20-25 % выше, его массовая доля составляла 30,0-32,6 %. Содержание другого ценного компонента — α -туйона в инфицированных соцветиях выше на 22-30 %, β -туйона — на 20,4-24,3 %. В инфицированных соцветиях содержание β -туйона составляло 4,19-4,71, в неифицированных — 3,88 %.

Количество таких терпеновых соединений, как туйоловый спирт, α -терпинеол, в инфицированных и неинфицированных соцветиях изменялось в одних и тех же пределах, количество терпинен-4-ола в инфицированных соцветиях увеличивалось в 1,1—1,6 раза по сравнению с неинфицированными. Цитронеллола больше накапливалось в неинфицированных соцветиях, в отдельных сортоклонах (№ 7-50) — в 2,3 раза.

Особо ценным компонентом ЭМ A. balchanorum является алифатический терпеновый альдегид цитраль ($C_{10}H_{16}O$), ради производства которого и выращивают полынь. Природный цитраль [10] — смесь двух геометрических изомеров. В ЭМ A. balchanorum преобладает μuc -изомер (гераниаль), его массовая доля составляет 12,73—13,10 %, mpahc-изомера (нераля) содержится 11,18—11,22 %. Биосинтез этих изомеров в неинфицированных и инфицированных соцветиях изменяется в одних и тех же пределах. Исключение составляет сортоклон 7-50, у которого содержание нераля и гераниаля в инфицированных соцветиях в 1,2 раза ниже.

Гераниол в инфицированных и неинфицированных соцветиях накапливается по-разному. Так, у сортоклона 7.8 биосинтез гераниола немного выше, у сортоклонов 7-50 и 4.2 — в 2,0—2,2 раза выше в неинфицированных соцветиях. Содержание в ЭМ такого сложного эфира, как линалилацетат в неинфицированных и инфицированных соцветиях примерно одинаково и колеблется от 0,19 до 0,30 %. Инфицированные соцветия накапливают линалилацетата на 20—35 % меньше, чем неинфицированные. Содержание α -терпинилацетата в цельном ЭМ инфицированных и неинфицированных соцветий также примерно одинаково, за исключением сортоклона 4.2, в инфицированных соцветиях которого оно выше в 1,4 раза.

Содержание геранилацетата в ЭМ неинфицированных соцветий выше в 1,2—1,5 раза. Содержание сесквитерпенов в инфицированных и неинфицированных соцветиях варьировало в одних и тех же пределах, особых различий у изученных сортоклонов не наблюдалось.

В 2008 г. исследования проводились на растениях трех хемотипов: цитрально-линалоольного (сортоклоны 1.36; 1-50), линалоольно-цитрального (сортоклон 130), цитрального (сортоклон 1-92) (табл. 2).

У сортоклонов *А. balchanorum* цитрально-линалоольного состава ЭМ, инфицированных ржавчинным грибом *Puccinia absinthii*, главным компонентом вместо линалоола становился цитраль. Гераниаля накапливалось больше, чем нераля, у сортоклонов 1.36 и 1-50 их количества составляли 32,1—32,8 (гераниаль) и 23,3—23,5 % (нераль). У хемотипов *А. balchanorum* линалоольно-цитрального (сортоклон 130) и цитрального типа (сортоклон 1-92), инфицированных ржавчинным грибом, биосинтез терпеновых соединений шел в другом направлении: количество гераниаля увеличивалось в 2,3—3,9, нераля — в 2,1—3,8 раза (сортоклоны 130 и 1-92). Содержание линалоола в неинфицированных соцветиях цитрально-линалоольного типа было выше в 10,8—11,8 раза и составляло

ТАБЛИЦА 2. Компонентный состав эфирного масла соцветий растений Artemisia balchanorum, инфицированных ржавчинным грибом Puccinia absinthii (2008 г.)

Компонент	Время удер- жива- ния, мин	Содержание компонента в ЭМ, % суммарного количества цельного масла							
		Сортоклон 1.36		Сортоклон 1-50		Сортоклон 130		Сортоклон 1-92	
		неин- фици- рован- ные	инфи- циро- ванные	неин- фици- рован- ные	инфи- циро- ванные	неин- фици- рован- ные	инфи- циро- ванные	неин- фици- рован- ные	инфи- циро- ванные
Сабинен	7,07	0,08	0,11	0,11	0,41	0,13	1,66	0,91	0,55
Мирцен	7,56	0,98	1,42	0,58	1,80	0,41	1,59	3,23	4,38
α-Терпинен	8,34	0,90	0,71	1,11	0,74	0,14	0,37	1,23	0,48
1,8-Цинеол	8,80	0,54	0,60	0,41	0,66	1,68	6,38	0,82	2,46
Линалоол	11,22	27,10	2,29	22,90	2,12	33,13	65,64	3,67	41,48
α-Туйон	11,31	0,21	5,77	0,22	9,17	1,38	2,68	7,54	3,06
β-Туйон	11,64	0,51	1,27	0,12	4,17	0,89	2,38	3,92	4,74
Терпинен-4-ол	13,71	0,78	0,18	1,18	0,47	0,55	0,87	0,30	0,49
α-Терпинеол	14,25	1,44	1,08	0,39	_	0,21	1,19	0,93	0,82
Цитронеллол	15,54	0,33	0,58	0,43	0,43	_	0,21	0,37	0,30
Нераль	15,90	19,32	23,51	14,75	23,31	13,83	3,61	23,38	11,08
Гераниол	16,43	2,38	5,37	5,25	4,43	1,52	0,38	2,64	0,94
Линалилацетат	16,54	0,19	0,24	_	_	_	_	_	0,12
Гераниаль	16,94	25,63	32,79	19,19	32,15	16,65	4,25	32,76	13,87
α-Терпинил- ацетат	17,56	0,31	0,32	_	_	1,43	0,10	_	0,21
Геранилацетат	20,47	6,50	9,00	10,88	7,87	8,25	0,76	7,86	5,05
<i>Цис</i> -жасмон	21,01	1,33	1,27	0,46	0,24	1,46	0,54	0,34	1,13
Кариофиллен	21,55	0,20	0,09	0,32	0,11	_	_	0,13	0,14

27,1—22,9 % (сортоклоны 1.36, 1-50). У растений линалоольно-цитрального типа (сортоклон 130), наоборот, биосинтез линалоола был в 2 раза выше в инфицированных соцветиях и составлял 65,64 %, у сортоклона цитрального типа этот показатель увеличивался в 11,3 раза (41,48 %). Биосинтез геранилацетата в инфицированных соцветиях линалоольно-цитрального типа снизился в 10,8 раза (0,76 против 8,25 %) по сравнению с неинфицированными. У других сортоклонов этот показатель колебался от -1,5 до +1,5 раза. У сортоклонов 1-50 и 130, инфицированных ржавчинным грибом, в 1,9—2,7 раза уменьшился биосинтез *цис*-жасмона. Содержание в ЭМ таких терпеновых соединений, как сабинен, мирцен, 1,8-цинеол, туйон, в инфицированных соцветиях (сортоклонов 1.36, 1-50, 130) оказалось значительно выше, чем в неинфицированных.

Таким образом, сделан вывод, что в соцветиях растений цитрально-линалоольного хемотипа, инфицированных ржавчинным грибом, цитраль накапливается за счет уменьшения накопления линалоола, в соцветиях растений линалоольно-цитрального хемотипа линалоол накапливается за счет снижения биосинтеза цитраля и гераниола.

В.Д. РАБОТЯГОВ, В.П. ИСИКОВ, Н.С. ОВЧАРЕНКО

- 1. *Багатурия Н.Ш.* Эфирные масла лекарственных и пряно-ароматических растений. Тбилиси: Параграф, 2005. 312 с.
- 2. *Визначник* грибів України. К.: Наук. думка, 1971. Т. 4. 313 с.
- Горяев М.И. Эфирные масла флоры СССР. Алма-Ата: Изд-во АН КазССР, 1952. 378 с.
- Горяев М., Плива И. Методы исследования эфирных масел. Алма-Ата: Изд-во АН КазССР, 1962. — 752 с.
- 5. *Ермаков А.И.*, *Аросимович В.П.*, *Смирнова-Иконникова М.И. и др.* Методы биохимического исследования растений. М.; Л.: Сельхозгиз, 1962. 520 с.
- 6. *Машанов В.И.*, *Андреева Н.Ф.*, *Машанова Н.С.*, *Логвиненко И.Е*. Новые эфиромасличные растения. Симферополь: Таврия, 1988. 160 с.
- 7. *Николаев А.Г.* О биологической роли компонентов эфирных масел // IV Междунар. конгр. по эфирным маслам. М.: Пищепромиздат, 1972. 2. С. 130—136.
- 8. Пигулевский Г.В. Химия терпенов. Л.: Изд-во Ленингр. ун-та, 1949. 286 с.
- 9. *Работягов В.Д., Курдюкова О.Н.* Ароматические растения, их эфирные масла и бальзамы. Луганск: Шико, ООО «Виртуальная реальность», 2008. 295 с.
- Работягов В.Д., Машанов В.И., Андреева Н.Ф. Интродукция эфиромасличных и пряноароматических растений. — Ялта: Гос. Никит. бот. сад, 1999. — 30 с.
- 11. Jennings W., Shibamoto T. Qualitative analysis of flavor and fragrance volatiles by glass capillary gas chromatography. N.Y.: Acad. Press., 1980. 320 p.

Получено 14.05.2010

ЗМІННІСТЬ КОМПОНЕНТНОГО СКЛАДУ ЕФІРНОЇ ОЛІЇ У *ARTEMISIA BALCHANORUM* KRASCH. ЗА ІНФІКУВАННЯ ІРЖАСТИМ ГРИБОМ *PUCCINIA ABSINTHII* DC.

В.Д. Работягов, В.П. Ісіков, Н.С. Овчаренко

Нікітський ботанічний сад — Національний науковий центр Національної академії аграрних наук України, Ялта

У рослин *Artemisia balchanorum*, інфікованих грибом *Puccinia absinthii*, ідентифіковано 41 терпенову сполуку. За компонентним складом ефірної олії інфіковані й неінфіковані суцвіття різняться: кількість мірцену в олії інфікованих рослин зменшувалась порівняно з неінфікованими в 1,8—2,3 раза, ліналоолу — збільшувалась до 25 %. Вміст геранілацетату та α-туйону в інфікованих суцвіттях знижувався відповідно на 30—50 та 11—30 %, вміст β-туйону на 22—30 % зростав.

VARIABILITY OF ESSENTIAL OIL COMPONENTS IN *ARTEMISIA BALCHANORUM* KRASCH. INFECTED BY FUNGUS *PUCCINIA ABSINTHII* DC.

V.D. Rabotyagov, V.P. Isikov, N.S. Ovcharenko

Nikita Botanical Garden — National Scientific Centre, National Academy of Agricultural Sciences of Ukraine

Yalta, Crimea, 98648, Ukraine

It has been identified 41 terpenic compounds in plants *Artemisia balchanorum* Krasch. which had been infected with fungus *Puccinia absinthii* DC. The component composition of essential oil in infected and non-infected plants is different. The quantity of mirzen decreased in the comparison with non-infected plants in 1,8–2,3 times, quantity of linalool increased at 25 %. Content of geranilacetat and α -tujon in infected plants decreased correspondently at 30–50 and 11–30 %, at the same time content of β -tujon increased at 22–30 %.

Key words: Artemisia balchanorum Krasch., Puccinia absinthii DC., essential oil, terpenoids biosynthesis