УДК 539.266

О. С. Роїк, С. О. Лисовенко, В. М. Перевертайло, В. П. Казіміров, О. Б. Логінова (м. Київ)

Моделювання та аналіз структури розплаву Ni₃₅Mn₅₇C₈

Проведено рентгенодифракційне дослідження розплаву $Ni_{35}Mn_{57}C_8$ при 1300, 1400 та 1500 °С. З отриманих експериментальних кривих структурного фактора за допомогою методу RMC реконструйовано структурні моделі розплаву при всіх досліджених температурах. Локальну структуру отриманих моделей досліджували за допомогою статистично-геометричного методу Вороного-Делоне. Здійснено порівняльний аналіз структури розплавів $Ni_{92}C_8$, $Ni_{38}Mn_{62}$ та $Ni_{35}Mn_{57}C_8$ показано, що порівняно з розплавом $Ni_{92}C_8$ в розплаві $Ni_{35}Mn_{57}C_8$ атоми вуглецю мають підвищену рухливість.

Ключові слова: розплав Ni—Mn, рентгенодифракційне дослідження, локальний порядок, функція парного розподілу.

Вступ. Цінною інформацією для опису процесу кристалізації з розплаву є енергія його зародкоутворення та швидкість дифузії компонента, що кристалізується, до поверхні кристала. Енергія зародкоутворення симбатна поверхневому натягу на межі рідина—тверда фаза, що кристалізується. Швидкість дифузії компонента до поверхні кристала знаходиться в протилежній залежності від енергії його взаємодії з іншими компонентами розчину. Цілком очевидно, що швидкість дифузії компонента до поверхні кристала залежить і від взаємодії між всіма компонентами розчину, оскільки в процесі переміщення часточка дифундуючого компонента змушена розривати всі зв'язки, що трапляються на її шляху. Оскільки структура рідини залежить від міжатомної взаємодії компонентів, то структурні дослідження допомагають в оцінці вищезгаданих факторів кристалізації при відсутності можливості їх прямого експериментального визначення.

Відомо, що ефективним ростовим середовищем для вирощування синтетичних алмазів є бінарний розплав Ni—Mn, для якого оптимальні *р*, *T*-умови відповідають співвідношенню Ni:Mn = 38:62 [1]. Раніше нами було проведено рентгенодифракційне дослідження та моделювання розплаву Ni₉₂C₈ [2, 3] та бінарних розплавів системи Ni—Mn [4]. Мета даної роботи полягала у рентгенодифракційному дослідженні, моделюванні та детальному аналізі отриманих структурних моделей розплаву Ni₃₅Mn₅₇C₈ (співвідношення Ni:Mn = 38:62). Паралельно проведено порівняльний аналіз локальної структури потрійного розплаву Ni₃₅Mn₅₇C₈ і відповідних йому бінарних розплавів Ni₉₂C₈ та Ni₃₈Mn₆₂.

Експеримент та моделювання. Досліджуваний сплав готували з електролітичних Ni (99,95 %), Mn (99,7 %) та графіту (99,99 %) сплавленням компонентів в електродуговій печі КПТМ-2 з невитратним вольфрамовим електродом в мідному водоохолоджуваному тиглі в захиснім середовищі аргону. Густину ρ та поверхневий натяг $\sigma_{\rm pr}$ розплаву Ni₃₅Mn₅₇C₈ при темпе-

© О. С. РОЇК, С. О. ЛИСОВЕНКО, В. М. ПЕРЕВЕРТАЙЛО, В. П. КАЗІМІРОВ, О. Б. ЛОГІНОВА, 2009

ратурі 1250 °С вимірювали методом "великої краплі" в тиглях із Al₂O₃ в вакуумі 3·10⁻³ Па за допомогою обладнання, описаного в [5].

Рентгенодифракційне дослідження розплаву Ni₃₅Mn₅₇C₈ проведено при температурі 1300, 1400 та 1500 °C. Криві інтенсивності розсіяних рентгенівських променів отримано методом "на відбиття" від вільної поверхні розплаву на автоматичному θ - θ дифрактометрі з використанням МоКа-випромінювання ($\lambda = 0,071069$ нм), монохроматизованого парою збалансованих диференціальних фільтрів, виготовлених з ZrO₂ та Y₂O₃ та розташованих у дифрагованому пучку, що забезпечувало високий ступінь монохроматизації при мінімальному ослабленні інтенсивності розсіяного випромінювання. Для мінімізації випадкових похибок в експериментальних даних дослідження кожного розплаву проведено не менше трьох раз при однаковій температурі. Схема θ - θ дифрактометра і методика проведення високотемпературного рентгенодифракційного експерименту описані в [6].

При обробці експериментальних кривих враховували поправки на поляризацію рентгенівських променів і кутову залежність некогерентного розсіювання. Нормування до електронних одиниць здійснювали за рівнянням Вайнштейна з використанням атомних факторів та поправок на аномальну дисперсію з [7]. Розрахунок кривих структурного фактора (СФ) a(S) ($S = 4\pi \sin\theta/\lambda$ вектор дифракції, θ — половина кута розсіювання, λ — довжина хвилі рентгенівського випромінювання) та функцій парного розподілу (ФПР) атомів g(R) проводили згідно методики, описаної у [8]. Експериментальні криві структурного фактора отримані в інтервалі значень вектора дифракції 0,9— 12,5 Å⁻¹.

Структурні моделі розплавів при різних температурах було реконструйовано з експериментальних кривих структурного фактора за допомогою методу оберненого Монте Карло [9], який відомий у літературі під назвою Reverse Monte Carlo method (RMC). Вихідну конфігурацію задавали випадковим чином, вона містила 10000 атомів в основній комірці у стехіометричному співвідношенні, що відповідає складу розплаву. При цьому розміри модельного куба узгоджували з густиною розплаву при температурі дослідження, котра становила 0,07523 атом/Å³ при 1300 °C, 0,07409 атом/Å³ при 1400 °C та 0,07295 атом/Å³ при 1500 °C. Як фактор обмеження в моделюванні застосовували відстані максимального зближення атомів σ , які становили 2,1 (Ni— Ni), 2,15 (Ni—Mn), 1,65 (Ni—C), 2,2 (Mn—Mn), 1,7 (Mn—C) та 1,2 (C—C) Å. Наведені значення для атомів одного сорту визначали з відповідних експериментальних кривих *g*(*R*) чистих компонентів, для пар з різносортних (*i-j*) атомів використовували адитивне наближення, згідно якого $\sigma_{ij} = (\sigma_{ii} + \sigma_{ji})/2$.

Первинний аналіз отриманих моделей полягав у розрахунку парціальних структурних характеристик атомного впорядкування: функцій парного розподілу атомів $g_{ij}(R)$, кривих структурних факторів $a_{ij}(s)$, найбільш імовірних міжатомних відстаней $R_1(i-j)$ та кривих розподілу кута у зв'язках атом атом—атом для локального оточення атомів у розплаві. Більш детальний модельний аналіз локальної структури розплавів був реалізований за допомогою статистично-геометричного методу Вороного-Делоне [10]. Згідно з цим методом, конфігураційний простір моделі розбивають на поліедри Вороного (ПВ) з подальшим розрахунком їх метричних та топологічних характеристик. Оскільки ПВ, який побудований навколо будь-якого атома структурної моделі, є геометричним відображенням його локального оточення, то розподіл характеристик ПВ кількісно характеризує локальний атомний порядок досліджуваного розплаву.

www.ism.kiev.ua; www.rql.kiev.ua/almaz j

Результати та обговорення. На рис. 1 наведено СФ (рис. 1, *a*) та ФПР атомів (рис. 1, *б*) для розплаву Ni₃₅Mn₅₇C₈ при температурах 1300, 1400 та 1500 °C у порівнянні з дифракційними даними, отриманими для бінарних розплавів Ni₉₂C₈ [2] та Ni₃₈Mn₆₂ [4]. Як видно з рис. 1, криві СФ та ФПР виявляють більшу схожість у випадку розплавів, що містять вуглець – Ni₃₅Mn₅₇C₈ і Ni₉₂C₈, ніж у випадку Ni₃₅Mn₅₇C₈ та Ni₃₈Mn₆₂. Це може свідчити про суттєвий вплив вуглецю на формування локальної структури розплавів, а також на подібність локального порядку розплавів, що містять вуглець. Тут же наведено модельні криві СФ, котрі узгоджуються з експериментальними в межах похибки експерименту, що вказує на адекватність реконструйованих структурних моделей реальній структурі досліджуваних розплавів.

Рис. 1. Експериментальні (точки) і модельні (лінії) криві структурного фактора a(S) (a) та функцій парного розподілу атомів g(R) (б) для потрійного розплаву Ni₃₅Mn₅₇C₈ при температурах 1500 (1), 1400 (2) 1300 (3) °C та бінарних розплавів Ni₃₈Mn₆₂ при 1068 °C (4) і Ni₉₂C₈ при 1390 °C (5).

Аналіз кривих СФ та ФПР полягав у розрахунку положення їх перших максимумів s_1 та R_1 (табл. 1), де R_1 характеризує найбільш ймовірну відстань в локальному оточенні атомів розплаву. Слід зазначити, що значення s_1 та R_1 для потрійного розплаву Ni₃₅Mn₅₇C₈ ближчі до відповідних параметрів бінарного розплаву Ni₉₂C₈, ніж до параметрів бінарного розплаву Ni₃₈Mn₆₂, та слабо залежать від температури, що може вказувати на певну стабільність локального оточення атомів. Разом з тим, форма кривих СФ та ФПР помітно змінюється з підвищенням температури, що є свідченням зміни локальної структури розплавів. Для з'ясування цього питання було використано результати моделювання структури потрійного розплаву при різних температурах методом RMC.

Був проведений порівняльний аналіз парціальних кривих $a_{ij}(s)$ та $g_{ij}(R)$ (рис. 2), розрахованих із RMC-моделей потрійного розплаву Ni₃₅Mn₅₇C₈ та бінарних розплавів Ni₉₂C₈, Ni₃₈Mn₆₂. Отримані з $g_{ij}(R)$ значення парціальних міжатомних відстаней $R_1(i-j)$ наведено у табл. 1.

Як видно з табл. 1, з ростом температури значення R_1 (Ni—Ni) та R_1 (Mn— Mn) залишаються практично незмінними, а R_1 (Ni—Mn) виявляє тенденцію до незначного скорочення. Підвищення температури слабо впливає на форму та положення максимумів кривих $g_{NiNi}(R)$, $g_{NiMn}(R)$ та $g_{MnMn}(R)$ (рис. 2, a, δ , c). Отримані результати вказують на незначні зміни структури матриці з 3*d*металу з підвищенням температури розплаву. З іншого боку, при підвищенні температури відбуваються зміни в локальному оточенні атомів вуглецю, про

що свідчать суттєві збільшення міжатомних відстаней $R_1(Ni-C)$, $R_1(Mn-C)$ і $R_1(C-C)$ та зміна форми і положення максимумів на відповідних кривих $g_{ij}(R)$. Потрібно зазначити, що кореляція в парах C-C обмежується, в основному, першою координаційною сферою (див. рис. 2, ∂), оскільки $g_{CC}(R) \approx 1$ при R > 4 Å. З підвищенням температури до 1500 °C висота першого максимуму функції $g_{CC}(R)$ значно зменшується з одночасним зсувом його положення в напрямку більших значень R. Це, на нашу думку, свідчить про більш однорідний розподіл атомів вуглецю в матриці З*d*-металу при значному перегріві над лінією ліквідус.

	s ₁ , Å ⁻¹	R ₁ , Å						
<i>T</i> , °C			парціальні					
		3di di Ibha	Ni—Ni	Ni—Mn	Ni—C	Mn—Mn	Mn—C	C—C
Ni ₃₅ Mn ₅₇ C ₈								
1300	3,01	2,51	2,54	2,53	1,85	2,53	1,89	1,45
1400	3,02	2,52	2,53	2,51	1,90	2,54	1,93	1,51
1500	3,02	2,51	2,53	2,51	1,94	2,54	1,98	1,65
Ni ₉₂ C ₈ [2]								
1390	2,99	2,48	2,49	_	1,75	_	_	1,43
Ni ₃₈ Mn ₆₂ [4]								
1068	2,93	2,59	2,61	2,58	—	2,56	—	—

Таблиця 1. Параметри локального впорядкування розплавів Ni₃₅Mn₅₇C₈, Ni₉₂C₈ та Ni₃₈Mn₆₂

Порівнюючи парціальні міжатомні відстані потрійного розплаву при температурі 1300 °С з відповідними значеннями міжатомних відстаней у бінарних розплавах (табл. 1), можна зазначити ряд особливостей. Всі парціальні R_1 у розплаві Ni₃₈Mn₆₂ більші, ніж у розплаві Ni₃₅Mn₅₇C₈, особливо у випадку R_1 (Ni—Ni) та R_1 (Ni—Mn), тобто, додавання вуглецю досить сильно змінює локальне оточення атомів Ni та Mn порівняно з бінарним розплавом Ni₃₈Mn₆₂. З іншого боку, значення R_1 (Ni—Ni) і R_1 (Ni—C) для бінарного розплаву Ni₉₂C₈ помітно менші, особливо R_1 (Ni—C). Порівняння з R_1 (C—C) показує, що інтенсивність міжатомної взаємодії між атомами вуглецю практично не змінюється при переході від бінарного до потрійного розплаву. Таким чином, додавання мангану послаблює взаємодію між атомами Ni—Ni i Ni—C в розплаві Ni₃₅Mn₅₇C₈ порівняно з бінарним розплавом, тоді як інтенсивність взаємодії в парах С—C залишається сталою.

Локальний порядок атомів у структурних моделях потрійного розплаву також досліджували за допомогою методу Вороного-Делоне. В табл. 2 представлені дані для математичного сподівання $[K_{c\phi}]$ та його середньоквадратичного відхилення σ кривих розподілу коефіцієнта сферичності поліедрів Вороного $K_{c\phi}$ розплаву Ni₃₅Mn₅₇C₈ при різних температурах та розплавів Ni₉₂C₈, Ni₃₈Mn₆₂. Видно, що з підвищенням температури $[K_{c\phi}]$ для ПВ, що побудовані навколо атомів Ni та Mn, зменшується, особливо при переході від 1400 до 1500 °C, тоді як значення σ збільшується. Така поведінка $[K_{c\phi}]$ та σ свідчить про те, що щільне пакування атомів навколо Ni та Mn з ростом температури зменшується внаслідок інтенсифікації теплового руху атомів розплаву [11]. Більш цікавим є зростання $[K_{c\phi}]$ з одночасним зменшенням σ для ПВ, які побудовані навколо атомів вуглецю, що свідчить про зростання щільності пакування атомів у локальному оточенні атомів вуглецю в розплаві. Така поведінка метричних характеристик ПВ говорить про те, що з ростом температури вуглець більш рівномірно розподіляється в матриці 3*d*-металів, що корелює з поведінкою кривої $g_{\rm CC}(R)$. Таким чином, якщо при температурах поблизу лінії ліквідус у металічних розплавах вуглець схильний утворювати ланцюжки [2], то з підвищенням температури такі конфігурації атомів поступово розпадаються.

Рис. 2. Криві функцій парного розподілу атомів $g_{ij}(R)$ для потрійного розплаву Ni₃₅Mn₅₇C₈ ($g_{NiNi}(a), g_{NiMn}(\delta), g_{NiC}(e), g_{MnMn}(c), g_{MnC}(\delta), g_{CC}(e)$) при температурах 1500 (1), 1400 (2) 1300 (3) °C та бінарних розплавів Ni₃₈Mn₆₂ (a, δ, c) при 1068 °C (4) і Ni₉₂C₈ (a, e, e) при 1390 °C (5).

Для оцінки величини відносної сили міжатомної взаємодії було використано просторовий кут грані поліедра Вороного. Ця величина є площею проекції грані на одиничну сферу з центром на атомі, навколо якого побудований поліедр. Просторовий кут грані можна інтерпретувати як частку електронів

атома, розділених з сусіднім атомом, з яким утворена дана грань. Згідно алгоритму побудови ПВ [10] кожній грані поліедра відповідає зв'язок атом атом, таким чином величина просторового кута грані характеризує міжатомний зв'язок.

Таблиця 2. Математичне сподівання [K_{сф}] та його середньоквадратичне відхилення **σ** кривих розподілу коефіцієнта сферичності ПВ для розплавів Ni₃₅Mn₅₇C₈, Ni₉₂C₈ та Ni₃₈Mn₆₂

<i>T</i> , °C		Ni	Mn		С			
	$[K_{c\phi}]$	σ, %	$[K_{c\phi}]$	σ, %	$[K_{c\phi}]$	σ, %		
Ni ₃₅ Mn ₅₇ C ₈								
1300	$0,690{\pm}0,001$	4,05±0,05	0,695	3,77	0,555	10,4		
1400	0,692	4,51	0,694	4,55	0,566	10,1		
1500	0,680	4,48	0,686	4,23	0,563	9,7		
Ni ₉₂ C ₈ [2]								
1390	0,708	3,0	-		0,503	8,8		
$Ni_{38}Mn_{62}$ [9]								
1070	0,696	3,63	0,699	3,46	-			

У [12] була введена величина валентного зусилля *s*, яке визначається з рівняння

$$s = \frac{\Omega \xi}{4\pi}$$
,

де ζ — ступінь окиснення центрального атома; Ω — просторовий кут в стерадіанах.

У випадку металічного розплаву, якщо виходити з припущення, що міжатомний простір рівномірно заповнюється електронним газом, доцільно розглядати лише просторовий кут безвідносно до ступеня окиснення центрального атома. На рис. З наведено криві розподілу просторових кутів $P(\Omega)$. Приклад розподілу просторових кутів для розплаву, який відповідає температурі 1300 °C, показано на рис. З, *а*. Видно, що криві розподілу для зв'язків Ni—Ni, Ni—Mn, Mn—Mn лежать досить близько одна до однієї, вказуючи на незначну різницю у величині міжатомної взаємодії. Те саме стосується і кривих розподілу просторових кутів для зв'язків Ni—C та Mn—C.

На рис. 3, б наведено розподіл просторових кутів для зв'язків Ni—C в розплавах Ni₃₅Mn₅₇C₈ та Ni₉₂C₈. Для розплаву Ni₉₂C₈ була використана модель, часточки якої задані у вигляді жорстких сфер, що не взаємодіють між собою. Як видно з рис. 3, б, розподіл просторових кутів у зв'язках Ni—C для цієї моделі та для моделі розплаву Ni₃₅Mn₅₇C₈, отриманої на основі експериментального структурного фактора, подібні. Це означає, що в розплаві Ni₃₅Mn₅₇C₈ нікель слабо зв'язаний з атомами вуглецю. Зважаючи на подібність розподілів просторових кутів для зв'язків Ni—C в розплаві Ni₃₅Mn₅₇C₈, можна також зробити висновок і про слабкість зв'язків Mn—C.

У [3] було показано, що в системи Ni—С зв'язок між атомом нікелю та вуглецю має деяку направленість, що підтверджується наявністю двох максимумів на кривій розподілу просторових кутів для зв'язків Ni—С (див. рис. 3, б). Отже, в розплаві Ni₃₅Mn₅₇C₈ зникає направленість зв'язку Ni—C, що може бути обумовлено появою конкурентної взаємодії між атомами Ni та Mn. Оскільки має місце ослаблення взаємодії атомів вуглецю з атомами нікелю та мангану, то для розриву старих зв'язків (чим супроводжується рух атома в рідині) потрібна мала енергія. Іншими словами, в потрійному розплаві енергія активації переходу атома вуглецю від однієї групи атомів до іншої менша, ніж у бінарному розплаві $Ni_{92}C_8$. Це узгоджується зі збільшенням відстаней R_1 (Ni—C) у локальному оточенні атомів потрійного розплаву.

Рис. 3. Розподіл просторових кутів Ω для розплаву Ni₃₅Mn₅₇C₈ (Ni—Ni (1), Ni—Mn (2), Ni—C (3), Mn—Mn (4), Mn—C (5), C—C (6)) при температурі 1300 °C (*a*), та розподіл просторових кутів для зв'язків Ме—C в розплавах Ni₃₅Mn₅₇C₈ при 1300 °C (1), Ni₉₂C₈ при 1390 °C (2) (δ).

Додавання вуглецю в розплав Ni₃₈Mn₆₂ призводить до збільшення величин поверхневого натягу: для розплаву Ni₃₈Mn₆₂ вона становить 1053±11 мДж/м² (при 1250 °C), для розплаву Ni₃₅Mn₅₇C₈ — 1452±18 мДж/м² (при 1250 °C). Отже, зміна поверхневого натягу розплаву також свідчить про зміну характеру упорядкування атомів у розплаві. Для з'ясування отриманого результату розглянемо локальне оточення в розплавах Ni₃₈Mn₆₂ та Ni₃₅Mn₅₇C₈.

Візьмемо довільний атом A в розчині, знайдемо просторові кути для кожного атома, що є його найближчими сусідами. Суму просторових кутів для певного типу атомів в оточенні атома A назвемо часткою цього типу в оточенні атома A. Можна знайти математичне сподівання величини частки кожного типу в оточенні різних типів атомів. Очевидно, що для ідеального розчину оточення атома визначається співвідношенням компонентів розчину і не залежить від типу атома, тобто для кожного типу атома відношення математичних сподівань часток Ni до Mn в координаційній сфері повинно складати ~ 0,61 (відношення мольної частки Ni до мольної частки Mn в розчині).

У табл. З наведено відношення математичних сподівань часток Ni до Mn в оточенні атомів різних типів у розплавах Ni₃₅Mn₅₇C₈ та Ni₃₈Mn₆₂. З наведених цифр можна побачити, що, відносно співвідношення різних атомів в ідеальному розчині, в розплаві Ni₃₅Mn₅₇C₈ атоми Mn оточені як в ідеальному розчині, тоді як атоми Ni більше оточені атомами свого сорту, а в оточенні атомів вуглецю переважає Mn. В розплаві Ni₃₈Mn₆₂ в оточенні атомів обох типів переважають атоми протилежного типу, що свідчить про певне розшарування в даному розплаві. Тобто, додавання вуглецю призводить до зміни локального оточення атомів в розплаві Ni₃₅Mn₅₇C₈ більш близькі між атомами Ni—Ni, Mn—Mn i Ni—Mn у розплаві Ni₃₅Mn₅₇C₈ більш близькі між собою, ніж в розплаві Ni₃₈Mn₆₂. Незначна різниця у величинах міжатомної взаємодії

між атомами розплаву $Ni_{35}Mn_{57}C_8$ (структура розплаву більш ідеальна) пояснює збільшення поверхневого натягу розплаву при додаванні вуглецю в розплав $Ni_{38}Mn_{62}$.

<i>T</i> , °C	Ni	Mn	С
		Ni35Mn57C8	
1300	0,62	0,61	0,59
1400	0,63	0,61	0,58
1500	0,62	0,61	0,61
		Ni ₃₈ Mn ₆₂	
1070	0,6	0,62	—

Таблиця 3. Відношення математичних сподівань часток Ni до Mn в оточенні атомів різних типів

Аналогічним чином розглянемо локальне оточення атомів вуглецю в розплавах $Ni_{38}Mn_{62}$ та $Ni_{35}Mn_{57}C_8$. В табл. 4 наведено частку атомів вуглецю (у відсотках), що мають сусідами певну кількість атомів свого типу. В даному разі сусідніми вважали атоми, що мають між собою спільну грань ПВ, і пряма, проведена між цими атомами, перетинає дану грань (основна грань [10]). Очевидно, що зі збільшенням кількості атомів вуглецю, що знаходяться в ланцюжках, адже якщо атом вуглецю має хоча б два сусіди — він знаходиться в ланцюжку, який складається мінімум з трьох атомів. Отже, з наведеної табл. 4 можна зробити висновок, що в розплаві $Ni_{35}Mn_{57}C_8$ зі зростанням температури зменшується частка атомів вуглецю в ланцюжках, в той час, як в розплаві $Ni_{92}C_8$ частка атомів вуглецю в ланцюжках значно менша, ніж в розплаві $Ni_{35}Mn_{57}C_8$.

T, °C	Кількість сусідніх атомів С							
	0	1	2	3	4			
$Ni_{35}Mn_{57}C_8$ (модель, отримана на основі експериментальних даних)								
1300	53,625	33,625	9,375	2,75	0,5			
1400	50,125	33,625	10,5	4,25	0,75			
1500	55,875	34,25	8,625	1,25	0			
Ni ₉₂ C ₈ (модель, отримана на основі експериментальних даних)								
1390	71,5	22	5,25	1	0,25			
$Ni_{92}C_8$ (модель жорстких сфер)								
1390	59	33,25	6,5	1,25	0			

Таблиця 4. Частка атомів вуглецю (%) з відповідною кількістю сусідів свого типу

З табл. 4 видно, що оточення атомів вуглецю атомами свого сорту для моделей розплаву Ni₃₅Mn₅₇C₈ більш подібне до такого, як в моделі жорстких сфер системи Ni₉₂C₈, ніж для моделі розплаву Ni₉₂C₈, отриманої на основі експериментальних даних (у зв'язку з подібністю оточення C атомами свого сорту в моделях жорстких сфер систем Ni₉₂C₈ та Ni₃₅Mn₅₇C₈ дані для моделі жорстких сфер системи Ni₃₅Mn₅₇C₈ не наведено). Дана обставина підтверджує раніше зроблений висновок про те, що в потрійному розплаві атоми вуглецю слабше зв'язані з атомами металу, ніж в бінарному. Таким чином, геометрично незалежні характеристики (розподіл просторових кутів та локальне оточення атомів вуглецю атомами його ж сорту), які отримані з використанням моделі на основі експериментальних дифракційних даних, свідчать про зменшення сили взаємодії атомів метал—вуглець в розплаві Ni₃₅Mn₅₇C₈. Цей висновок, в свою чергу, підтверджує адекватність використаної моделі, яка отримана на основі експериментальних дифракційних даних, для опису реальної структури розплаву.

Висновки

Вперше здійснено рентгенодифракційне дослідження розплаву $Ni_{35}Mn_{57}C_8$ при 1300, 1400 та 1500 °C. На основі дифракційних даних отримано структурні моделі розплаву з використанням методу RMC. Отримані моделі також проаналізовано за допомогою статистично-геометричного методу Вороного-Делоне.

Порівняння параметрів локальної структури потрійного розплаву Ni₃₅Mn₅₇C₈ з даними для бінарних розплавів Ni₉₂C₈ та Ni₃₈Mn₆₂ показало, що добавка вуглецю суттєво впливає на локальну структуру розплаву. Порівняно з розплавом Ni₃₈Mn₆₂, структура розплаву Ni₃₅Mn₅₇C₈ більш ідеальна, що призводить до збільшення поверхневого натягу розплаву.

Порівняно з розплавом $Ni_{92}C_8$, атоми вуглецю в розплаві $Ni_{35}Mn_{57}C_8$ слабше взаємодіють з атомами нікелю та мангану, що сприяє підвищенню їх рухливості. З підвищенням температури ланцюжки вуглецю в металічній матриці руйнуються і спостерігається його більш однорідний розподіл в об'ємі розплаву.

- 1. Синтемические сверхтвердые материаллы: В 3-х т. Т. 1. Синтез сверхтвердых материаллов / Под общ. ред. Н. В. Новикова. Киев: Наук. думка, 1986. 280 с.
- 2. Казимиров В. П., Роик А. С., Перевертайло В. М., Логинова О. Б. Структура никельуглеродного расплава состава Ni₉₂C₈ // Сверхтв. материалы. — 2004. — № 6. — С. 46— 53.
- 3. *Лисовенко С. О.* Аналіз RMC-моделі розплаву системи Ni—C // Там же. 2006. № 3. С. 30—35.
- 4. Роїк О. С., Лисовенко С. О., Перевертайло В. М. та ін. Моделювання та аналіз структури бінарних розплавів системи Ni—Mn // Там же. 2009. № 2. С. 43—48.
- 5. Перевертайло В. М., Золотухин А. В., Логинова О. Б. и др. Установка для изучения характеристик металлических расплавов // Там же.— 1994. № 2. С. 7—12.
- Шпак А. П., Сокольський В. Э., Казимиров В. П. и др. Структурные особенности расплавов оксидных систем. — Киев: Академпериодика, 2003. — 137 с.
 Авдюхина В. М., Батсурь Д., Зубенко В. В. и др. Рентгенография. Спецпрактикум / Под
- Авдюхина В. М., Батсурь Д., Зубенко В. В. и др. Рентгенография. Спецпрактикум / Под общ. ред. А. А. Кацнельсона. — М.: Изд-во Моск. ун-та, 1986. — 240 с.
- 8. Казимиров В. П., Смык С. Ю., Сокольский В. Э. и др. К методике рентгенографического исследования расплавов // Расплавы. 1996. № 5. С. 85—90.
- McGreevy R. L. Reverse Monte-Carlo modeling // J. Phys. Condens. Matter. 2001. 13, N 46. — P. R877—913.
- 10. *Медведев Н. Н.* Метод Вороного-Делоне в исследовании структуры некристаллических систем. Новосибирск: Изд-во СО РАН, 2000. 214 с.
- 11. Роик А. С., Казимиров В. П., Сокольский В. Э. Моделирование и анализ структуры жидких металлов методами обратного Монте-Карло и Вороного-Делоне // Журнал структурной химии. 2004. 45, № 4. С. 683—691.
- 12. Балатов В. А., Сережкин Н. В. Координационные числа атомов // Соросовский образовательный журнал. 1999. № 7. С. 91—97.

Ін-т надтвердих матеріалів

ім. В. М. Бакуля НАН України

Надійшла 22.12.08

ISSN 0203-3119. Сверхтвердые материалы, 2009, № 3

67