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Reparametrizations of vector fields
and their shift maps

Let M be a smooth manifold, F be a smooth vector field on M , and (Ft) be
the local flow of F . Denote by Sh(F ) the subset of C∞(M, M) consisting
of maps h : M → M of the following form:

h(x) = Fα(x)(x),

where α runs over all smooth functions M → R which can be substituted
into F instead of t. This space often contains the identity component
of the group of diffeomorphisms preserving orbits of F . In this note it
is shown that Sh(F ) is not changed under reparametrizations of F , that
is for any smooth strictly positive function µ : M → (0, +∞) we have
that Sh(F ) = Sh(µF ). As an application it is proved that F can be
reparametrized to induce a circle action on M if and only if there exists a
smooth function µ : M → (0, +∞) such that F(x,µ(x)) ≡ x.
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1. Introduction

Let M be a smooth manifold and F be a smooth vector field
on M tangent to ∂M . For each x ∈M its integral trajectory with
respect to F is a unique mapping ox : R ⊃ (ax, bx) →M such that
ox(0) = x and d

dtox = F (ox), where (ax, bx) ⊂ R is the maximal
interval on which a map with the previous two properties can be
defined. The image of ox will be denoted by the same symbol
ox and also called the orbit of x. It follows that from standard
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theorems in ODE the following subset of M × R

dom(F ) = ∪
x∈M

x× (ax, bx),

is an open, connected neighbourhood of M × 0 in M × R. Then
the local flow of F is the following map

F : M × R ⊃ dom(F ) →M, F(x, t) = Fx(t).

It is well known that if M is compact, or F has compact support,
then F is defined on all of M .

Denote by func(F ) ⊂ C∞(M,R) the subset consisting of func-
tions α : M → R whose graph Γα = {(x, α(x)) : x ∈ M} is
contained in dom(F ). Then we can define the following map

ϕ : C∞(M,R) ⊃ func(F ) −→ C∞(M,M),

ϕ(α)(x) = F(x, α(x)).

This map will be called the shift map along orbits of F and its
image in C∞(M,M) will be denoted by Sh(F ).

It is easy to see, [1, Lm. 2], that ϕ is Sr,r-continuous for all
r ≥ 0, that is continuous between the corresponding Sr Whitney
topologies of func(F ) and C∞(M,M).

Moreover, if the set ΣF of singular points of F is nowhere dense,
then ϕ is locally injective, [1, Pr. 14]. Therefore it is natural
to know whether it is a homeomorphism with respect to some
Whitney topologies, and, in particular, whether it is Sr,s-open, i.e.
open as a map from Sr topology of func(F ) into Ss topology of
the image Sh(F ), for some r, s ≥ 0. These problems and their
applications were treated e.g. in [1–3].

In this note we prove the following theorems describing the be-
haviour of the image of shift maps under reparametrizations and
pushforwards.

Theorem 1. Let µ : M → R be any smooth function and G = µF
be the vector field obtained by the multiplication F by µ. Then

(1) Sh(G) ⊂ Sh(F ).
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Suppose that µ 6= 0 on all of M . Then

Sh(µF ) = Sh(F ).

In this case the shift mapping ϕ : func(F ) → Sh(F ) of F is
Sr,s-open for some r, s ≥ 0, if and only if so is the shift mapping
ψ : func(G) → Sh(G) of G.

Theorem 2. Let z ∈ M , α : (M,z) → R be a germ of smooth
function at z, and f : M → M be a germ of smooth map defined
by f(x) = F(x, α(x)). Suppose that f is a germ of diffeomorphism
at z. Then

(2) f∗F = (1 + F (α)) · F,
where f∗F = Tf ◦F ◦f−1 is the vector field induced by f , and F (α)
is the derivative of α along F . Thus f∗F is just a reparametriza-
tion of F .

If α : M → R is defined on all of M and f = ϕ(α) is a diffeo-
morphism of M , then

Sh(f∗F ) = Sh(F ).

Further in §3 we will apply these results to circle actions. In
particular, we prove that F can be reparametrized to induce a
circle action on M if and only if there exists a smooth function
µ : M → (0,+∞) such that F(x, µ(x)) ≡ x, see Corollary 1.

2. Proofs of Theorems 1 and 2

These theorems are based on the following well-known state-
ment, see e.g. [4,5,8] for its variants in the category of measurable
maps.

Lemma 1. Let G = µF and G : dom(G) → M be the local flow
of G. Then there exists a smooth function α : dom(G) → R such
that

G(x, s) = F(x, α(x, s)).
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In fact,

(3) α(x, s) =

s∫

0

µ(G(x, τ))dτ.

In particular, for each γ ∈ func(G) we have that

(4) G(x, γ(x)) = F(x, α(x, γ(x))),

whence Sh(G) ⊂ Sh(F ).

Proof. Put G(x, s) = F(x, α(x, s)), where α is defined by (3). We
have to show that G = G.

Notice that a flow G of a vector field G is a unique mapping
that satisfies the following ODE with initial condition:

∂G(x, s)

∂s

∣∣∣∣
s=0

= G(x) = F (x)µ(x), G(x, 0) = x.

Notice that

α(x, 0) = 0, α′
s(x, 0) = µ(G(x, 0)) = µ(x).

In particular, G(x, 0) = F(x, α(x, 0)) = x. Therefore it remains to
verify that

(5)
∂G(x, s)

∂s

∣∣∣∣
s=0

= F (x) · µ(x).

We have:

(6)
∂G
∂s

(x, s) =
∂F

∂s
(x, α(x, s)) =

∂F(x, t)

∂t

∣∣∣∣
t=α(x,s)

· α′
s(x, s).

Substituting s = 0 in (6) we get (5). �

Proof of Theorem 1. Eq. (1) is established in Lemma 1.
Suppose that µ 6= 0 on all of M . Then F = 1

µG, and 1
µ is

smooth on all of M . Hence again by Lemma 1 Sh(F ) ⊂ Sh(G),
and thus Sh(F ) = Sh(G).
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To prove the last statement define a map ξ : func(G) → func(F )
by

ξ(γ)(x) = α(x, γ(x)) =

s∫

0

µ(G(x, τ))dτ, γ ∈ func(G).

Then (4) means that the following diagram is commutative:

func(G)
ξ−−−−→ func(F )

ψ

y
yϕ

Sh(G) Sh(F )

We claim that ξ is a homeomorphism with respect to Sr topologies
for all r ≥ 0. Indeed, evidently ξ is Sr,r-continuous. Put

(7) β(x, s) =

s∫

0

dτ

µ(F(x, τ))
.

Then the inverse map ξ−1 : func(F ) → func(G) is given by

(8) ξ−1(δ)(x) = β(x, δ(x)) =

δ(x)∫

0

dτ

µ(F(x, τ))
, δ ∈ func(F ),

and is also Sr,r-continuous. Hence ψ is Sr,s-open iff so is ϕ. The-
orem 1 is completed.

Proof of Theorem 2. First we reduce the situation to the case
α(z) = 0. Suppose that a = α(z) 6= 0 and let β(x) = α(x) − a.
Define the following germ of diffeomorphisms g = F−a ◦ f at z:

g(x) = F(F(x, α(x)),−a) = F(x, α(x) − a) = F(x, β(x)).

Then g(z) = z, and β(z) = 0.
Since F preserves F , i.e. (Ft)∗F = F for all t ∈ R, we obtain

that

f∗F = f∗(F−a)∗F = (f ◦ F−a)∗F = g∗F.
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Moreover, F (α) = F (β). Therefore it suffices to prove our state-
ment for g.

If z is a singular point of F , i.e. F = 0, then both parts of (2)
vanish. Therefore we can assume that z is a regular point of F .
Then there are local coordinates (x1, . . . , xn) at z = 0 ∈ Rn in
which F (x) = ∂

∂x1
and

F(x1, . . . , xn, t) = (x1 + t, x2, . . . , xn).

Then g(x1, . . . , xn) = (x1 + β(x), x2, . . . , xn), whence

Tg ◦ F ◦ g−1 =




1 + β′x1
β′x2

· · · β′xn

0 1 0 0
· · · · · · · · · · · ·
0 0 0 1







∂
∂x1

0
· · ·
0


 =

= (1 + β′x1
)F = (1 + F (β))F.

Suppose now that α is defined on all of M and f is a diffeomor-
phism of all of M . Then by [1] the function µ = 1 + F (α) 6= 0 on
all of M , whence by Theorem 1 Sh(µF ) = Sh(F ).

3. Periodic shift maps

Let F be a vector field, and ϕ be its shift map. The set

ker(ϕ) = ϕ−1(idM )

will be called the kernel of ϕ, thus F(x, ν(x)) ≡ x for all ν ∈
ker(ϕ). Evidently, 0 ∈ ker(ϕ). Moreover, it is shown in [1, Lm. 5]
that ϕ(α) = ϕ(β) iff α− β ∈ func(F ).

Suppose that the set ΣF of singular points of F is nowhere
dense in M . Then, [1, Th. 12 & Pr. 14], ϕ is a locally injective
map with respect to any weak or strong topologies, and we have
the following two possibilities for ker(ϕ):

a) Non-periodic case: ker(ϕ) = {0}, so ϕ : func(F ) → Sh(F )
is a bijection.
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b) Periodic case: there exists a smooth strictly positive func-
tion

θ : M → (0,+∞)

such that F(x, θ(x)) ≡ x and ker(ϕ) = {nθ}n∈Z.
In this case func(F ) = C∞(M,R), ϕ yields a bijection between

C∞(M,R)/ ker(ϕ) and Sh(F ), and for every α ∈ C∞(M,R) we
have that

ϕ−1 ◦ ϕ(α) = α+ ker(ϕ) = {α+ kθ}k∈Z.

It also follows that every non-singular point x of F is periodic of
some period Per(x),

θ(x) = nxPer(x)

for some nx ∈ N, and in particular, θ is constant along orbits of
F . We will call θ the period function for ϕ.

Lemma 2. Suppose that the shift map ϕ of F is periodic and let
θ be its period function. Let also µ : M → (0,+∞) be any smooth
strictly positive function. Put G = µF . Then the shift map ψ of
G is also periodic, and its period function is

(9) θ̄(x)
(8)
== ξ−1(θ)(x) = β(x, θ(x)) =

θ(x)∫

0

dτ

µ(F(x, τ))
.

If µ is constant along orbits of F , then the last formula reduces to
the following one:

(10) θ̄ =
θ

µ
.

In particular, for the vector field G = θF its period function is
equal to θ̄ ≡ 1.

Proof. Let G : M × R → M be the flow of G. We have to show
that G(x, θ̄(x)) ≡ x for all x ∈M :

(11) G(x, θ̄(x))
(9)

=== G
(
x, β(x, θ(x))

)
= F(x, θ(x)) ≡ x.
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Since θ is the minimal positive function for which F(x, θ(x)) ≡ x
and µ > 0, it follows from (9) that so is θ̄ is also the minimal
positive function for which (11) holds true. Hence θ̄ is the period
function for the shift map of G.

Let us prove (10). Since µ is constant along orbits of F , we
have that µ(F(x, τ)) = µ(x), whence

θ̄(x) = β(x, θ(x)) =

θ(x)∫

0

dτ

µ(F(x, τ))
=

θ(x)∫

0

dτ

µ(x)
=
θ(x)

µ(x)
.

Lemma is proved. �

3.1. Circle actions. Regard S1 as the group U(1) of complex
numbers with norm 1, and let exp : R → S1 be the exponential
map defined by exp(t) = e2πit.

Let Γ : M × S1 →M be a smooth action of S1 on M . Then it
yields a smooth R-cation (or a flow) G : M × R →M given by

(12) G(x, t) = Γ(x, exp(t)).

Moreover G is generated by the following vector field

G(x) =
∂G(x, t)

∂t

∣∣∣∣
t=0

.

Evidently, any of Γ, G, and G determines two others. In partic-
ular, a flow G on M is of the form (12) for some smooth circle
action Γ on M if and only if G1 = idM , i.e. G(x, 1) ≡ x for all
x ∈M .

In other words, the shift map of G is periodic and its period
function is the constant function θ ≡ 1.

As a consequence of Lemma 2 we get the following:

Corollary 1. Let F be a smooth vector field on M and

θ : M → (0,+∞)

be a smooth strictly positive function. Then the following condi-
tions are equivalent:
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(a) the vector field G = θF yields a smooth circle action, i.e.
G(x, 1) = x for all x ∈M ;

(b) the shift map ϕ of F is periodic and θ is its period function,
i.e. F(x, θ(x)) ≡ x for all x ∈M .

Corollary 2. Suppose that the shift map ϕ of F is periodic and
let z ∈ M be a singular point of F . Then there are k, l ≥ 0 such
that 2k+ l = dimM , non-zero numbers A1, . . . , Ak ∈ R\{0}, local
coordinates (x1, y1, . . . , xk, yk, t1, . . . , tl) at z = 0 ∈ R2k+l, and in
which the linear part of F at 0 is given by

j10F (x1, y1, . . . , xk, yk, t1, . . . , tl) = −A1y1
∂

∂x1
+A1x1

∂

∂y1
+ · · ·

−Akyk
∂

∂xk
+Akxk

∂

∂yk
.

Proof. Let θ be the period function for F and G = θF . Since
θ > 0, it follows that ΣF = ΣG and for every z ∈ ΣF we have that

j1zG = θ(z) · j1zF.

Therefore it suffices to prove our statement for G.
By Corollary 1 G yields a circle action, i.e. G1 = idM , where G

is the flow of G. Then G yields a linear flow TzGt on the tangent
space TzM such that TzG1 = id. In other words we obtain a
linear action (i.e. representation) of the circle group U(1) in the
finite-dimensional vector space TzM . Now the result follows from
standard theorems about presentations of U(1). �

Remark 1. Suppose that in Corollary 2 dimM = 2. Then we
can choose local coordinates (x, y) at z = 0 ∈ R2 in which

j10F (x, y) = −y ∂
∂x

+ x
∂

∂y
.

For this case the normal forms of such vector fields are described
in [7].
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