Збірник праць
Ін-ту математики НАН України
2009, т.6, №2, 276-287

V. V. Goldberg

New Jersey Institute of Technology, Newark, NJ, USA
E-mail: vladislav.goldberg@gmail.com

V. V. Lychagin

University of Tromso, Tromso, Norway
E-mail: lychagin@math.uit.no

Geodesic Webs and PDE Systems of Euler Equations

We find necessary and sufficient conditions for the foliation defined by level sets of a function $f\left(x_{1}, \ldots, x_{n}\right)$ to be totally geodesic in a torsion-free connection and apply them to find the conditions for d-webs of hypersurfaces to be geodesic, and in the case of flat connections, for d-webs $(d \geq n+1)$ of hypersurfaces to be hyperplanar webs. These conditions are systems of generalized Euler equations, and for flat connections we give an explicit construction of their solutions.
Keywords: web, hyperplanar web, Euler equation, foliation, connection

1. Introduction

In this paper we study necessary and sufficient conditions for the foliation defined by level sets of a function to be totally geodesic in a torsion-free connection on a manifold and find necessary and sufficient conditions for webs of hypersurfaces to be geodesic. These conditions has the form of a second-order PDE system for web functions. The system has an infinite pseudogroup of symmetries and the factorization of the system with respect to the pseudogroup leads us to a first-order PDE system. In the planar case (cf. [1]), the system coincides with the classical Euler equation and therefore can be solved in a constructive way. We provide a method to solve the system in arbitrary dimension and flat connection.
(c) V. V. Goldberg, V. V. Lychagin, 2009

2. Geodesic Foliations and Flex Equations

Let M^{n} be a smooth manifold of dimension n. Let vector fields $\partial_{1}, \ldots, \partial_{n}$ form a basis in the tangent bundle, and let $\omega^{1}, \ldots, \omega^{n}$ be the dual basis. Then

$$
\left[\partial_{i}, \partial_{j}\right]=\sum_{k} c_{i j}^{k} \partial_{k}
$$

for some functions $c_{i j}^{k} \in C^{\infty}(M)$, and

$$
d \omega^{k}+\sum_{i<j} c_{i j}^{k} \omega^{i} \wedge \omega^{j}=0
$$

Let ∇ be a linear connection in the tangent bundle, and let $\Gamma_{i j}^{k}$ be the Christoffel symbols of second type. Then

$$
\nabla_{i}\left(\partial_{j}\right)=\sum_{k} \Gamma_{i j}^{k} \partial_{k}
$$

where $\nabla_{i} \stackrel{\text { def }}{=} \nabla_{\partial_{i}}$, and

$$
\nabla_{i}\left(\omega^{k}\right)=-\sum_{j} \Gamma_{i j}^{k} \omega^{j} .
$$

In [1] we proved the following result.
Theorem 1. The foliation defined by the level sets of a function $f\left(x_{1}, \ldots, x_{n}\right)$ is totally geodesic in a torsion-free connection ∇ if and only if the function f satisfies the following system of PDEs:

$$
\begin{align*}
& \frac{\partial_{i}\left(f_{i}\right)}{f_{i} f_{i}}-\frac{\partial_{i}\left(f_{j}\right)+\partial_{j}\left(f_{i}\right)}{f_{i} f_{j}}+\frac{\partial_{j}\left(f_{j}\right)}{f_{j} f_{j}}= \\
& =\sum_{k}\left(\Gamma_{i i}^{k} \frac{f_{k}}{f_{i} f_{i}}+\Gamma_{j j}^{k} \frac{f_{k}}{f_{j} f_{j}}-\left(\Gamma_{i j}^{k}+\Gamma_{j i}^{k}\right) \frac{f_{k}}{f_{i} f_{j}}\right) \tag{1}
\end{align*}
$$

for all $i<j, i, j=1, \ldots, n$; here $f_{i}=\frac{\partial f}{\partial x_{i}}$.

We call such a system a flex system.
Note that conditions (1) can be used to obtain necessary and sufficient conditions for a d-web formed by the level sets of the functions $f_{\alpha}\left(x_{1}, \ldots, x_{n}\right), \alpha=1, \ldots, d$, to be a geodesic d-web, i.e., to have the leaves of all its foliations to be totally geodesic: one should apply conditions (1) to the all web functions $f_{\alpha}, \alpha=$ $1, \ldots, d$

2.1. Geodesic Webs on Manifolds of Constant Curvature.

 In what follows, we shall use the following definition.Definition 1. We call by (Flex $f)_{i j}$ the following function:

$$
(\text { Flex } f)_{i j}=f_{j}^{2} f_{i i}-2 f_{i} f_{j} f_{i j}+f_{i}^{2} f_{j j},
$$

where $i, j=1, \ldots, n, f_{i}=\frac{\partial f}{\partial x_{i}}$ and $f_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$.
It is easy to see that $(\text { Flex } f)_{i j}=(\text { Flex } f)_{j i}$, and (Flex $\left.f\right)_{i i}=0$.
Proposition 1. Let $\left(\mathbb{R}^{n}, g\right)$ be a manifold of constant curvature with the metric tensor

$$
g=\frac{d x_{1}^{2}+\cdots+d x_{n}^{2}}{\left(1+\kappa\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\right)^{2}},
$$

where κ is a constant. Then the level sets of a function

$$
f\left(x_{1}, \ldots, x_{n}\right)
$$

are geodesics of the metric g if and only if the function f satisfies the following PDE system:

$$
\begin{equation*}
(\text { Flex } f)_{i j}=\frac{2 \kappa\left(f_{i}^{2}+f_{j}^{2}\right)}{1+\kappa\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)} \sum_{k} x_{k} f_{k} \tag{2}
\end{equation*}
$$

for all i, j.
Proof. To prove formula (2), first note that the components of the metric tensor g are

$$
g_{i i}=b^{2}, g_{i j}=0, \quad i \neq j,
$$

where

$$
b=\frac{1}{1+\kappa\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)} .
$$

It follows that

$$
g^{i i}=g_{i i}^{-1}, g^{i j}=0, \quad i \neq j .
$$

We compute $\Gamma_{j k}^{i}$ using the classical formula

$$
\begin{equation*}
\Gamma_{i j}^{k}=\frac{1}{2} g^{k l}\left(\frac{\partial g_{l i}}{\partial x^{j}}+\frac{\partial g_{l j}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{l}}\right) \tag{3}
\end{equation*}
$$

and get

$$
\begin{aligned}
& \Gamma_{i i}^{k}=2 \kappa x_{k} b, k \neq i ; \Gamma_{i i}^{i}=-2 \kappa x_{i} b ; \Gamma_{i j}^{k}=0, i, j \neq k, i \neq j ; \\
& \Gamma_{i j}^{i}=-2 \kappa x_{j} b, \quad i \neq j ; \Gamma_{i j}^{j}=-2 \kappa x_{i} b, \quad i \neq j .
\end{aligned}
$$

Substituting these values of $\Gamma_{j k}^{i}$ into the right-hand side of formula (1), we get formula (2).

Note that if $n=2$, then PDE system (2) reduces to the single equation

$$
\text { Flex } f=\frac{2 \kappa\left(x_{1} f_{1}+x_{2} f_{2}\right)\left(f_{1}^{2}+f_{2}^{2}\right)}{1+\kappa\left(x_{1}^{2}+x_{2}^{2}\right)}
$$

where Flex $f=(\text { Flex } f)_{12}$.
This formula coincides with the corresponding formula in [1].
We rewrite formula (2) as follows:

$$
\begin{equation*}
\frac{(\text { Flex } f)_{i j}}{f_{i}^{2}+f_{j}^{2}}=2 \kappa b \sum_{k} x_{k} f_{k} \tag{4}
\end{equation*}
$$

The left-hand side of equation (4) does not depend on i and j. Thus we have

$$
\frac{(\text { Flex } f)_{i j}}{f_{i}^{2}+f_{j}^{2}}=\frac{(\text { Flex } f)_{k l}}{f_{k}^{2}+f_{l}^{2}}
$$

for any i, j, k, and l.

It follows that if
$(\text { Flex } f)_{i j}=0$
for some fixed i and j, then (5) holds for any i and j.
In other words, one has the following result.
Theorem 2. Let W be a geodesic d-web on the manifold $\left(\mathbb{R}^{n}, g\right)$ given by web-functions $\left\{f^{1}, \ldots, f^{d}\right\}$ such that $\left(f_{k}^{a}\right)^{2}+\left(f_{l}^{a}\right)^{2} \neq 0$ for all $a=1, \ldots, d$ and $k, l=1,2, \ldots, n$. Assume that the intersection of W with the plane $\left(x_{i_{0}}, x_{j_{0}}\right)$, for given i_{0} and j_{0}, is a linear planar d-web. Then the intersection of W with arbitrary planes $\left(x_{i}, x_{j}\right)$ are linear webs too.

2.2. Geodesic Webs on Hypersurfaces in \mathbb{R}^{n}.

Proposition 2. Let $(M, g) \subset \mathbb{R}^{n}$ be a hypersurface defined by an equation $x_{n}=u\left(x_{1}, \ldots, x_{n-1}\right)$ with the induced metric g and the Levi-Civita connection ∇. Then the foliation defined by the level sets of a function $f\left(x_{1}, \ldots, x_{n-1}\right)$ is totally geodesic in the connection ∇ if and only if the function f satisfies the following system of PDEs:
(6) (Flex $f)_{i j}=\frac{u_{1} f_{1}+\cdots+u_{n-1} f_{n-1}}{1+u_{1}^{2}+\cdots+u_{n-1}^{2}}\left(f_{j}^{2} u_{i i}-2 f_{i} f_{j} u_{i j}+f_{i}^{2} u_{j j}\right)$.

Proof. To prove formula (6), note that the metric induced by a surface $x_{n}=u\left(x_{1}, \ldots, x_{n-1}\right)$ is

$$
g=d s^{2}=\sum_{k=1}^{n-1}\left(1+u_{k}^{2}\right) d x_{k}^{2}+2 \sum_{i, j=1(i \neq j)}^{n-1} u_{i} u_{j} d x_{i} d x_{j} .
$$

Thus the metric tensor g has the following matrix:

$$
\left(g_{i j}\right)=\left(\begin{array}{cccc}
1+u_{1}^{2} & u_{1} u_{2} & \ldots & u_{1} u_{n-1} \\
u_{2} u_{1} & 1+u_{2}^{2} & \ldots & u_{2} u_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1} & u_{n-1} u_{2} & \ldots & 1+u_{n-1}^{2}
\end{array}\right) \text {, }
$$

and the inverse tensor g^{-1} has the matrix

$$
\begin{gathered}
\left(g^{i j}\right)=\frac{1}{1+\sum_{k=1}^{n-1}\left(1+u_{k}^{2}\right)} \times \\
\times\left(\begin{array}{cccc}
\sum_{k=2}^{n-1}\left(1+u_{k}^{2}\right) & -u_{1} u_{2} & \ldots & -u_{1} u_{n-1} \\
-u_{2} u_{1} & \sum_{k=1(k \neq 2)}^{n-1}\left(1+u_{k}^{2}\right) & \ldots & -u_{2} u_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
-u_{n-1} u_{1} & -u_{n-1} u_{2} & \ldots & \sum_{k=1}^{n-2}\left(1+u_{k}^{2}\right)
\end{array}\right) .
\end{gathered}
$$

Computing $\Gamma_{j k}^{i}$ by formula (3), we find that

$$
\Gamma_{i j}^{k}=\frac{u_{k} u_{i j}}{1+\sum_{k=1}^{n-1}\left(1+u_{k}^{2}\right)} .
$$

Applying these formulas to the right-hand side of (1), we get formula (6).

We rewrite equation (6) in the form

$$
\begin{equation*}
\frac{(\text { Flex } f)_{i j}}{f_{j}^{2} u_{i i}-2 f_{i} f_{j} u_{i j}+f_{i}^{2} u_{j j}}=\frac{u_{1} f_{1}+\cdots+u_{n} f_{n}}{1+u_{1}^{2}+\cdots+u_{n}^{2}} . \tag{7}
\end{equation*}
$$

It follows that the left-hand side of (7) does not depend on i and j, i.e., we have

$$
\frac{(\text { Flex } f)_{i j}}{f_{j}^{2} u_{i i}-2 f_{i} f_{j} u_{i j}+f_{i}^{2} u_{j j}}=\frac{(\text { Flex } f)_{k l}}{f_{l}^{2} u_{k k}-2 f_{k} f_{l} u_{k l}+f_{k}^{2} u_{l l}}
$$

for any i, j, k and l. This means that if

$$
(\text { Flex } f)_{i j}=0
$$

for some fixed i and j, then

$$
(\text { Flex } f)_{k l}=0
$$

for any k and l.
In other words, we have a result similar to the result in Theorem 2.

Theorem 3. Let W be a geodesic d-web on the hypersurface (M, g) given by web functions $\left\{f^{1}, \ldots, f^{d}\right\}$ such that

$$
\left(f_{j}^{a}\right)^{2} u_{i i}-2 f_{i}^{a} f_{j}^{a} u_{i j}+\left(f_{i}^{a}\right)^{2} u_{j j} \neq 0
$$

for all $a=1, \ldots, d$ and $k, l=1,2, \ldots, n$. Assume that the intersection of W with the plane $\left(x_{i_{0}}, x_{j_{0}}\right)$, for given i_{0} and j_{0}, is a linear planar d-web. Then the intersection of W with arbitrary planes $\left(x_{i}, x_{j}\right)$ are linear webs too.

3. Hyperplanar Webs

In this section we consider hyperplanar geodesic webs in \mathbb{R}^{n} endowed with a flat linear connection ∇.

In what follows, we shall use coordinates x_{1}, \ldots, x_{n} in which the Christoffel symbols $\Gamma_{j k}^{i}$ of ∇ vanish.

The following theorem gives us a criterion for a web of hypersurfaces to be hyperplanar.

Theorem 4. Suppose that a d-web of hypersurfaces, $d \geq n+1$, is given locally by web functions $f_{\alpha}\left(x_{1}, \ldots, x_{n}\right), \alpha=1, \ldots, d$. Then the web is hyperplanar if and only if the web functions satisfy the following PDE system:

$$
\begin{equation*}
(\text { Flex } f)_{s t}=0 \tag{8}
\end{equation*}
$$

for all $s<t=1, \ldots, n$.
Proof. For the proof, one should apply Theorem 1 to all foliations of the web.

In order to integrate the above PDEs system, we introduce the functions

$$
A_{s}=\frac{f_{s}}{f_{s+1}}, s=1, \ldots, n-1,
$$

and the vector fields

$$
X_{s}=\frac{\partial}{\partial x_{s}}-A_{s} \frac{\partial}{\partial x_{s+1}}, s=1, \ldots, n-1 .
$$

Then the system can be written as

$$
X_{s}\left(A_{t}\right)=0,
$$

where $s, t=1, \ldots, n-1$.
Note that

$$
\left[X_{s}, X_{t}\right]=0
$$

if the function f is a solution of (8).
Hence, the vector fields X_{1}, \ldots, X_{n-1} generate a completely integrable ($n-1$)-dimensional distribution, and the functions

$$
A_{1}, \ldots, A_{n-1}
$$

are the first integrals of this distribution.
Moreover, the definition of the functions A_{s} shows that

$$
X_{s}(f)=0, s=1, \ldots, n-1,
$$

also.
As a result, we get that

$$
A_{s}=\Phi_{s}(f), \quad s=1, \ldots, n-1,
$$

for some functions Φ_{s}.
In these terms, we get the following system of equations for f :

$$
\frac{\partial f}{\partial x_{s}}=\Phi_{s}(f) \frac{\partial f}{\partial x_{s+1}}, \quad s=1, \ldots, n-1,
$$

or

$$
\begin{equation*}
\frac{\partial f}{\partial x_{s}}=\Psi_{s}(f) \frac{\partial f}{\partial x_{n}}, s=1, \ldots, n-1 \tag{9}
\end{equation*}
$$

where $\Psi_{n-1}=\Phi_{n-1}$, and

$$
\Psi_{s}=\Phi_{n-1} \cdots \Phi_{s}
$$

for $s=1, \ldots, n-2$.
This system is a sequence of the Euler-type equations and therefore can be integrated. Keeping in mind that a solution of the single Euler-type equation

$$
\frac{\partial f}{\partial x_{s}}=\Psi_{s}(f) \frac{\partial f}{\partial x_{n}}
$$

is given by the implicit equation

$$
f=u_{0}\left(x_{n}+\Psi_{s}(f) x_{s}\right),
$$

where $u_{0}\left(x_{n}\right)$ is an initial condition, when $x_{s}=0$, and Ψ_{s} is an arbitrary nonvanishing function, we get solutions f of system (8) in the form:

$$
f=u_{0}\left(x_{n}+\Psi_{n-1}(f) x_{n-1}+\cdots+\Psi_{1}(f) x_{1}\right),
$$

where $u_{0}\left(x_{n}\right)$ is an initial condition, when

$$
x_{1}=\cdots=x_{n-1}=0,
$$

and Ψ_{s} are arbitrary nonvanishing functions.
Thus, we have proved the following result.
Theorem 5. Web functions of hyperplanar webs have the form

$$
\begin{equation*}
f=u_{0}\left(x_{n}+\Psi_{n-1}(f) x_{n-1}+\cdots+\Psi_{1}(f) x_{1}\right) \tag{10}
\end{equation*}
$$

where $u_{0}\left(x_{n}\right)$ are initial conditions, when $x_{1}=\cdots=x_{n-1}=$ 0 , and Ψ_{s} are arbitrary nonvanishing functions.

Example 15. Assume that $n=3$,

$$
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}, \quad f_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}, \quad f_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{3},
$$

and take $u_{0}=x_{3}, \Psi_{1}\left(f_{4}\right)=f_{4}^{2}, \Psi_{2}\left(f_{4}\right)=f_{4}$ in (10). Then we get the hyperplanar 4 -web with the remaining web function

$$
f_{4}=\frac{x_{2}-1 \pm \sqrt{\left(x_{2}-1\right)^{2}-4 x_{1} x_{3}}}{2 x_{1}}
$$

It follows that the level surfaces $f_{4}=C$ of this function are defined by the equation

$$
x_{1}\left(C^{2} x_{1}-C x_{2}+x_{3}+C\right)=0
$$

i.e., they form a one-parameter family of 2-planes

$$
C^{2} x_{1}-C x_{2}+x_{3}+C=0
$$

Differentiating the last equation with respect to C and excluding C, we find that the envelope of this family is defined by the equation

$$
\left(x_{2}\right)^{2}-4 x_{1} x_{3}-2 x_{2}+1=0
$$

Therefore, the envelope is the second-degree cone.
Example 16. Assume that $n=3$,

$$
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}, \quad f_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}, \quad f_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{3}
$$

and take $u_{0}=x_{3}, \Psi_{1}\left(f_{4}\right)=1, \Psi_{2}\left(f_{4}\right)=f_{4}^{2}$ in (10). Then we get the linear 4-web with the remaining web function

$$
f_{4}=\left(\frac{1 \pm \sqrt{1-4 x_{2}\left(x_{1}+x_{3}\right)}}{2 x_{2}}\right)^{2}
$$

The level surfaces $f_{4}=C^{2}$ of this function are defined by the equation

$$
x_{2}\left(x_{1}+C^{2} x_{2}+x_{3}-C\right)=0
$$

i.e., they form a one-parameter family of 2-planes

$$
x_{1}+C^{2} x_{2}+x_{3}-C=0
$$

Differentiating the last equation with respect to C and excluding C, we find that the envelope of this family is defined by the equation

$$
4 x_{1} x_{2}+4 x_{2} x_{3}-1=0
$$

Therefore, the envelope is the hyperbolic cylinder.
In the next example no one foliation of a web W_{3} coincides with a foliation of coordinate lines, i.e., all four web functions are unknown.

Example 17. Assume that $n=3$ and take

Description 1.

(i) $u_{01}=x_{3}, \quad \Psi_{1}\left(f_{1}\right)=f_{1}^{2}, \quad \Psi_{2}\left(f_{1}\right)=f_{1}$;
(ii) $u_{02}=x_{3}, \quad \Psi_{1}\left(f_{2}\right)=1, \quad \Psi_{2}\left(f_{2}\right)=f_{2}^{2}$;
(iii) $u_{03}=x_{3}^{2}, \quad \Psi_{1}\left(f_{3}\right)=f_{3}, \quad \Psi_{2}\left(f_{3}\right)=1$;
(iv) $u_{04}=x_{3}, \quad \Psi_{1}\left(f_{4}\right)=\Psi_{2}\left(f_{4}\right)=f_{4}$.
in (10). Then we get the linear 4 -web with the web functions

$$
\begin{aligned}
& f_{1}=\frac{x_{2}-1 \pm \sqrt{\left(x_{2}-1\right)^{2}-4 x_{1} x_{3}}}{2 x_{1}} \\
& f_{2}=\left(\frac{1 \pm \sqrt{1-4 x_{2}\left(x_{1}+x_{3}\right)}}{2 x_{2}}\right)^{2}
\end{aligned}
$$

(see Examples 15 and 16) and

$$
\begin{aligned}
f_{3} & =\left(\frac{1 \pm \sqrt{1-4 x_{1}\left(x_{2}+x_{3}\right)}}{2 x_{1}}\right)^{2} \\
f_{4} & =\frac{x_{3}}{1-x_{1}-x_{2}} .
\end{aligned}
$$

It follows that the leaves of the foliation X_{1} are tangent 2-planes to the second-degree cone

$$
\left(x_{2}\right)^{2}-4 x_{1} x_{3}-2 x_{2}+1=0
$$

(cf. Example 15 and 16), the leaves of the foliation X_{2} and X_{3} are tangent 2-planes to the hyperbolic cylinders

$$
4 x_{1} x_{2}+4 x_{2} x_{3}-1=0 \text { and } 4 x_{1} x_{2}+4 x_{1} x_{3}-1=0
$$

(cf. Example 16), and the leaves of the foliation X_{4} are 2-planes of the one-parameter family of parallel 2-planes

$$
C x_{1}+C x_{2}+x_{3}=1,
$$

where C is an arbitrary constant.

References

[1] Goldberg, V. V. and V. V. Lychagin Geodesic webs on a two-dimensional manifold and Euler equations. Acta Math. Appl.-2009.-103 (to appear).

