УДК: 669.162.144:669.162.2.003.12(477)

Д.Н.Тогобицкая, А.Ф.Хамхотько, Д.А.Степаненко

ОЦЕНКА КРИСТАЛЛИЗАЦИОННОЙ СПОСОБНОСТИ И МИНЕРАЛОГИЧЕСКОГО СОСТАВА КОНЕЧНЫХ ДОМЕННЫХ ШЛАКОВ В СЫРЬЕВЫХ И ТЕХНОЛОГИЧЕСКИХ УСЛОВИЯХ ДОМЕННЫХ ПЕЧЕЙ ЗАВОДОВ УКРАИНЫ

Целью работы является оценка кристаллизационной способности и минералогического состава конечных доменных шлаков, характерных для шихтовых и технологических условий доменных печей Украины. Проведен анализ шлакового режима ДП №9 ОАО «АрселорМиттал Кривой Рог», исследовано количество выделяющейся твердой фазы при охлаждении доменного шлака, максимальная скорость его кристаллизации. По комплексу свойств, характеризующих кристаллизационную способность шлака, вязкость и серопоглотительную способность, обоснован его оптимальный состав.

доменные печи, доменные шлаки, шлаковый режим, минералогический состав, кристаллизация, вязкость

Современное состояние вопроса. Доменный шлак, как и многие другие шлаки, участвующие в процессах черной металлургии, а именно его состав, химическая активность, температура плавления, вязкость и другие свойства в значительной мере определяют качество выплавляемого чугуна, интенсивность плавки, ровность хода доменной печи и тем самым оказывает влияние на расход кокса и других энергоносителей. В тоже время доменный шлак, помимо своих первостепенных задач, выполняемых в процессе доменной плавки, является богатейшим сырьевым источником для получения строительных материалов. Из огненно-жидких медленно охлажденных доменных шлаков можно получить бутовый камень, щебень для бетона и дорожного строительства, легкий заполнитель для изготовления сборных железобетонных конструкций и крупноблочного строительства, дорожную брусчатку, а из быстро охлажденных - ценнейший полуфабрикат для цементной промышленности и для изготовления обычных и активированных шлакобетонов, а также другие дешевые и высококачественные строительные материалы [1]. Также доменные шлаки используют при получении шлакоситаллов - стеклокристаллических материалов, получаемых управляемой катализированной кристаллизацией стекол, сваренных на основе металлургических, топливных и др. шлаков, минерального и синтетического сырья. Они характеризуются высокой химической устойчивостью и стойкостью к истиранию. Изделия из шлакоситаллов применяются в строительстве, химической, горнорудной и других отраслях промышленности для защиты строительных конструкций и оборудования от коррозии и абразивного износа [2].

В связи со значимостью доменного шлака в процессе производства чугуна, а также при его использовании в строительстве, технике и хими-

ческой промышленности очень важным является изучение его кристаллизационной способности и факторов, оказывающих на нее влияние. Эти знания позволят усовершенствовать технологии, в которых важную роль отводят шлаку и расширить область его применения.

Целью настоящей работы является расчет параметров и оценка кристаллизационной способности и минералогического состава конечных доменных шлаков в интервале температур солидус $(T_{\rm c})$ – ликвидус $(T_{\rm n})$, характерных для шихтовых и технологических условий доменных печей Украины.

Изложение основных материалов исследования. Основными параметрами, характеризующими кристаллизационную способность доменных шлаков являются температуры ликвидус (T_n) и солидус (T_c) , скорость кристаллизации, количество выделяющейся в интервале $T_n - T_c$ гетерогенной микрокристаллической фазы, ее минералогический состав. В данной работе в дополнение к ранее разработанным и внедренным нами в доменных цехах ОАО «АрселорМиттал Кривой Рог» системам прогнозирования и управления шлаковым режимом доменной плавки [3] выполнено исследование, выбор методик, разработка алгоритмического и программного обеспечения оценки влияния микрогетерогенности на свойства конечных доменных шлаков. Основой для исследований явилась созданная в ИЧМ в рамках банка данных «Металлургия» база данных «Шлак» о свойствах металлургических шлаков [4].

Для определения температурного диапазона перехода шлака из жидкого состояния в твердое пользуются вискозиметрическими данными. Васильев В.Е. предложил считать температурой ликвидус температуру достижения шлаком вязкости 1 Па·с [5]. Близкую к этому значению величину вязкости 0,8 Па·с рекомендуют авторы работы [6]. Однако более обоснованным, на наш взгляд, за температуру начала кристаллизации шлака (T_{π}) следует принимать перелом, соответствующий на графике $\lg \eta = f(\frac{1}{T})$ самой высокой температуре [7].

При перегреве шлакового расплава выше $T_{\rm n}$ его структуру можно трактовать как разупорядоченную гомогенную. Тогда появление при охлаждении расплава ниже $T_{\rm n}$ упорядоченных группировок соответствует образованию в гомогенном расплаве твердых частиц, и расплав становится микрогетерогенным. Обычно температурная зависимость вязкости в координатах $\eta - T$ (рис.1) состоит из линейного высокотемпературного и экспоненциального низкотемпературного участков. Точка перехода одного участка в другой соответствует $T_{\rm n}$, а экстраполяция линейного участка в область низких температур вплоть до $T_{\rm c}$ дает гипотетическую температурную зависимость вязкости гомогенного расплава (η_o).

Учитывая изложенное, с привлечением экстраполяционного метода и соотношений, представленных в [8, 9], получим

$$\varphi_{me.} = \frac{(\eta - \eta_o)}{\eta} \cdot 100,\tag{1}$$

где $\phi_{me.}$, % — объемная доля микрогетерогенной фазы расплава, η_o и η — вязкость соответственно гомогенного и гетерогенного расплава.

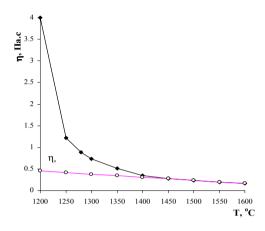


Рис.1. Вязкость шлака в координатах $\eta - T$

Полученное уравнение (1) позволяет по вискозиметрическим характеристикам шлаков определить количество выделяющейся микрогетерогенной фазы в температурном диапазоне $T_{\pi}-T_{c}$.

Для полной оценки кристаллизационной способности шлаков наряду с

величинами $T_{\rm n}$, $T_{\rm c}$ и ϕ_{me} важно знать скорость их кристаллизации, которая определяет характер кривой вязкости ниже $T_{\rm n}$, и минералогический состав.

С позиций теории направленной химической связи, разработанной Приходько Э.В. [10], были проанализированы данные, определенные методом закалки, опубликованные в работах Кручинина Ю.Д. с соавторами о кристаллизационной способности синтетических [11] и натуральных [12] доменных шлаков и получены уравнения:

$$\lg V_{\text{max}} = -28,424 - 0,618 \cdot \Delta e + 42,388 \cdot \rho \tag{2}$$

$$R = 0.87$$
; $\mu = 26.4$; $S_{ocm} = 12.9\%$

$$T_{\pi} = -523.3 + 72.984 \cdot \Delta e + 3390.435 \cdot \rho \tag{3}$$

$$R = 0.85$$
; $\mu = 24.1$; $S_{ocm} = 1.8\%$,

где $V_{\rm max}$, мк/мин — максимальная линейная скорость кристаллизации; $T_{\rm n}$, К — температура ликвидус; Δe и ρ — химический эквивалент и стехиометрия шлака соответственно [8], R — коэффициент корреляции; μ — критерий надежности; S_{ocm} — остаточное среднеквадратичное отклонение.

Расчетные величины T_{π} по уравнению (3), идентичны таковым, полученным из графиков зависимости $\lg \eta = f(\frac{1}{T})$ [13].

Для расчета нормативного минералогического состава шлаков доменных цехов комбината нами в соответствии с рекомендациями, изложен-

ными в работах [5,7], разработано соответствующее алгоритмическое и программное обеспечение.

Основными минералами доменных шлаков, кристаллизующимися в процессе охлаждения, являются мелилит, волластонит — CaO·SiO₂ ($T_{\Pi} = 1544^{\circ}$ C), ларнит — 2CaO·SiO₂ ($T_{\Pi} = 2130^{\circ}$ C). Кроме того, образуются силикаты железа и марганца и сульфиды кальция, магния, железа, марганца. Содержание мелилита является преобладающим (более 55 %). Он представляет собой твердый раствор окерманита 2CaO·MgO·2SiO₂ ($T_{\Pi} = 1454^{\circ}$ C) и геленита 2CaO·Al₂O₃·SiO₂ ($T_{\Pi} = 1590^{\circ}$ C), диаграмма состояния которого показана на рис.2.

Из рис.2 следует, что наименьшая температура кристаллизации мелилита соответствует около 70% окерманита в его составе, т.е. минерала, содержащего MgO и 30% геленита, содержащего Al_2O_3 . А это, в свою очередь, предполагает соотношение в шлаке $Al_2O_3/MgO \approx 1,1$, аналогичное предложенным нами ранее величинам в рекомендациях по оптимизации шлакового режима доменной плавки с целью повышения качества чугуна [14].

В соответствии с температурами кристаллизации минералов в процессе охлаждения доменных шлаков при $T_{\rm л}$ первой микрогетерогенной фазой выпадает ларнит, затем начинают выделяться микрокристаллы волластонита, затем мелилита. Соотношение этих фаз определяется химическим составом шлаков.

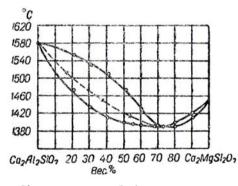


Рис.2. Диаграмма состояния системы окерманит – геленит

В рамках настоящего исследования нами выполнен анализ шлакового режима ДП №9 ОАО «АрселорМиттал Кривой Рог» в изменяющихся шихтовых условиях за 2005 г. Результаты представлены в табл. 1.

Как видно из табл.1, высокоосновные шлаки с $CaO/SiO_2>1,23$ гарантировано обеспечивают высокую степень десульфурации чугуна (0,011<[S]<0,026; Cs = 26,8) за счет высокого перегрева (0,72<[Si]<2,29; $\Delta H=1870~\mathrm{k}\mbox{Дж/кг}$). Однако такие шлаки являются тугоплавкими. Они содержат высокое количество тугоплавкого минерала ларнита, кристаллизующегося с большой скоростью сразу же по достижении T_{π} в коротком температурном интервале, что существенно снижает стабильность шлака, требует его перегрева и повышения расхода кокса. Низкоосновные шлаки ($CaO/SiO_2<1,1$) являются самыми легкоплавкими и маловязкими, и имеют

низкую склонность к кристаллизации, а, следовательно, высокую стабильность. Работа на таких шлаках обеспечивает снижение расхода кокса. Однако их серопоглотительная способность понижена, а низкая вязкость повышает склонность к агрессивному взаимодействию с футеровкой печи.

Таблица 1. Анализ кристаллизационной способности доменных шлаков ДП №9 в различных диапазонах основности (в скобках приведены средние значения)

различных диапазонах основности (в скооках приведены средние значения)			
Показатели	CaO/SiO ₂ >1,23	1,19 <cao sio<sub="">2<1,23</cao>	CaO/SiO ₂ <1,1
Чугун			
[Si], %	0,72-2,29 (1,24)	0,43-1,06 (0,69)	0,31-0,95 (0,62)
[S], %	0,011-0,026	0,019-0,040 (0,025)	0,021-0,059 (0,036)
	(0,015)		
Шлак			
CaO, %	48,5–51,8 (49,3)	46,0–47,8 (47,0)	40,7–45,4 (44,4)
SiO ₂ , %	35,3–36,8 (36,4)	38,1–39,8 (38,9)	39,4–43,9 (41,0)
Al ₂ O ₃ , %	6,4–8,8 (8,05)	6,3–7,9 (7,2)	6,1-7,5 (6,8)
MgO, %	5,40-6,60 (5,80)	5,60-6,40 (6,00)	5,10-6,70 (6,06)
MnO, %	0,10-0,21 (0,15)	0,18-0,74 (0,34)	0,15-1,36 (0,13)
FeO, %	0,08-0,35 (0,16)	0,10-0,43 (0,20)	0,15-0,62 (0,32)
S, %	1,3-1,9 (1,56)	1,1-1,5 (1,37)	1,1-1,5 (1,32)
CaO/SiO ₂	1,334-1,467	1,19-1,225 (1,208)	0,93-1,10 (1,084)
	(1,357)		
Al ₂ O ₃ /MgO	1,054–1,537 (1,39)	1,06–1,32 (1,205)	1,0-1,35 (1,13)
Тл, ⁰ С	1435–1472 (1440)	140-1420 (1415)	1390-1403 (1400)
Te, ⁰ C	1337–1395 (1346)	1294–1312 (1303)	1236–1280 (1272)
η ₁₅₀₀ , Πα·c	0,42-0,86 (0,48)	0,29-0,33 (0,306)	0,24-0,28 (0,25)
ΔH_{1500} , кДж/кг	1862–1883 (1870)	1833–1842 (1838)	1823–1828 (1824)
Cs	24,7–38,6 (26,8)	16,4–19,7 (18,0)	6,6–13,9 (12,6)
$\varphi_{me.}$ (T _n -	20	10	5
20°С),%об			
$V_{ m max}$, мк/мин	4000–12300 (5000)	1500–2600 (2000)	190–1200 (900)
Минералогический состав (%)			
Волластонит	0-14 (10,6)	20-27 (23)	30-59 (35,6)
(1544°C)		, ,	
Ларнит (2130°C)	23-40 (26,4)	11–18 (15)	0-5 (2,5)
Геленит (1590°C)	17–23,6 (21,5)	17–21 (19,2)	16-20 (18)
Окерманит (1454°C)	35–43 (37,8)	37–42 (39)	33–44 (40)
Мелилит (1400°C)	56,4–64,2 (59,3)	53,7–62,9 (58,4)	52–62 (58)
(-:)			1

Оптимальными по комплексу свойств, характеризующих их кристаллизационную способность, вязкость и серопоглотительную способность, являются шлаки в диапазоне основности $1,19 < \text{CaO/SiO}_2 < 1,23$. Тугоплавкий минерал ларнит образуется в количестве не более 15 %, кристаллизация этих шлаков начинается при температуре существенно более низкой, чем высокоосновных, с уменьшенной в 6–7 раз скоростью и в более широком температурном интервале.

Выводы

- 1. Разработана методика, алгоритмическое и программное обеспечение для оценки кристаллизационной способности доменных шлаков в интервале $T_{\pi} T_{c}$:
 - количество гетерогенной микрокристаллической фазы;
 - скорость кристаллизации;
 - минералогический состав.
- 2. Основным минералом, определяющим кристаллизационную способность доменных шлаков ОАО «АрселорМиттал Кривой Рог», является ларнит (2CaO·SiO₂). С увеличением основности шлаков количество ларнита возрастает и при основности выше 1,23 способствует резкому увеличению кристаллизационной способности и снижению стабильности шлаков, что требует существенного их перегрева и увеличения расхода кокса.
- 3. Показано, что соотношение окерманита и геленита 70:30 и соответственно $Al_2O_3/MgO\approx 1,1-1,2$ в мелилите обеспечивает его минимальную $T_{\rm KD}\approx 1400^{\rm o}{\rm C}$ и является оптимальным для доменных шлаков.
- 1. *Доменные* шлаки в строительстве. / Под редак. А.Б.Виткуп и др. К.: Госстройиздат УССР. 1956. С.452.
- 2. *Шлакоситаллы*. / Под ред. К.Т. Бондарева и др. М. 1970. C.280.
- Совершенствование шлакового режима доменной плавки в сырьевых условиях КГГМК «Криворожсталь». / П.И.Оторвин, Д.Н.Тогобицкая, А.И.Белькова и др. // Сталь. 2004. №6. С.24–28.
- Фактографические базы физико-химических данных в рамках банка данных «Металлургия» / А.Ф.Хамхотько, Т.Б.Рудненко, В.Л.Столярова и др. // Изв. АН СССР. Металлы. – 1991. – №4. – С.221–223.
- 5. Васильев В.Е. Доменная плавка на устойчивых шлаках. Киев: Гостехиздат, 1956. 260 с.
- Оптимизация шлакового режима доменной плавки в условиях ОАО ДМЗ им.Петровского. / В.Н.Ковшов, И.И.Дышлевич, С.Н.Каракай и др. // Теория и практика металлургии. – 2002. – №1. – С.6–8.
- 7. *Свойства* жидких доменных шлаков. / В.Г.Воскобойников, Н.Е.Дунаев, А.Г.Михалевич и др. М.: Металлургия, 1975. –184 с.
- Новохатский И.А., Архаров В.И. Количественная оценка структурной микронеоднородности жидких металлов. // ДАН СССР. Физическая химия. –1971. – Т.201. – №4. – С.905–908.
- Скрябин В.Г., Новохатский И.А. Исследование некоторых особенностей вязкого течения оксидных расплавов // ЖФХ. 1971. Т.ХLIX. №11. С.2759–2762.

- 10. Приходько Э.В. Моделирование структуры при исследовании связи между составом и свойствами оксидных расплавов // Изв. АН СССР. Неорганические материалы. -1990. Т.16. №5. С.900-906.
- Кручинин Ю.Д., Иванова Л.В. О кристаллизации и вязкости доменных шлаков // Изв. АН СССР. Металлы. – 1968. – №2. – С.50–58.
- 12. *Кручинин Ю.Д., Иванова Л.В., Румбах В.Э.* Кристаллизационные свойства уральских доменных шлаков. // Изв. АН СССР. Металлы. 1965. №6. С.14–23.
- Использование базы вискозиметрических данных для расчета кристаллизационной способности металлургических шлаков / Д.Н.Тогобицкая, А.Ф.Хамхотько, Ю.М.Лихачев, Д.А.Степаненко. // «Фундаментальные и прикладные проблемы черной металлургии». Сб.научн.тр.ИЧМ. Выпуск №18. 2008. С.200–209.;
- Способ ведения доменной плавки. / П.И.Оторвин, Д.Н.Тогобицкая, А.Ф.Хамхотько и др. // Патент Украины №62589, МКИ С21В5/00. –2003. – Бюл.№12. – 6 с.

Статья рекомендована к печати: Ответственный редактор раздела «Доменное производство»: академик НАН Украины В.И.Большаков докт.техн.наук, проф. Э.В.Приходько

Д.М.Тогобицька, А.Ф.Хамхотько, Д.А.Степаненко

Оцінка здатності кристалізації і мінералогічного складу кінцевих доменних шлаків в сировинних і технологічних умовах доменних печей заводів України

Метою роботи є оцінка здатності кристалізації і мінералогічного складу кінцевих доменних шлаків, характерних для шихтових і технологічних умов доменних печей України. Проведено аналіз шлакового режиму ДП №9 ВАТ «Арселор-Міттал Кривий Ріг», досліджено кількість твердої фази, що виділяється при охолоджуванні доменного шлаку, максимальна швидкість його кристалізації. За комплексом властивостей, що характеризують здатність кристалізації шлаку, в'язкість і здатність поглинати сірку, обґрунтовано його оптимальний склад.