Збірник праць Ін-ту математики НАН України 2009, т.6, №2, 56-76

И. Г. Величко

Запорожский национальный университет, Запорожье E-mail: phd@mail.zp.ua

М. А. Гургенидзе

Запорожский национальный университет, Запорожье E-mail: mag83@list.ru

П. Г. Стеганцева

Запорожский национальный университет, Запорожье E-mail: steg_pol@mail.ru

Подмногообразия грассманова многообразия плоскостей псевдоевклидова пространства

The smooth structure on the set of the nonisotropic and isotropic planes of the pseudo-Euclidean space 1R_4 was built. The metric in the local coordinates on this smooth structure was obtained.

Ключевые слова: псевдоевклидово пространство, грассманово многообразие, стационарные углы, метрика

Грассманово многообразие плоскостей евклидова пространства R_n изучалось многими геометрами. Основы внутренней геометрии грассманова многообразия этого пространства заложены в работах Вонга [10] и Лейхтвейса [5].

Основные результаты исследования стандартных грассмановых многообразий можно найти в обзорной статье А.А. Борисенко, Ю.А. Николаевского [2]. Грассмановы многообразия псевдоевклидова пространства изучались в работах И. Маазикаса [6] и С.Е. Козлова [4].

© И. Г. Величко, М. А. Гургенидзе, 2009

Одной из интересных является задача о восстановлении поверхности по ее грассманову образу, решением которой для евклидова пространства занимались, в частности, геометры харьковской школы, основанной А.В. Погореловым. Основные результаты их исследований изложены в монографии Ю.А. Аминова [1].

Представляет интерес решение аналогичной задачи для псевдоевклидова пространства, но этому должно предшествовать исследование геометрии грасссманова многообразия псевдоевклидова пространства и его подмногообразий. Этому вопросу посвящена данная статья. В ней, в частности, определено понятие стационарных углов между плоскостями, введена гладкая структура на множествах неизотропных и изотропных плоскостей, построена метрика грассманова многообразия.

1. Псевдоевклидово пространство

Псевдоевклидово четырехмерное пространство индекса 1, которое будем обозначать 1R_4 , можно определить как точечновекторное пространство, в котором выполнены все аксиомы системы Вейля, за исключением аксиомы V_4 , которую заменим аксиомой V_4^* : существуют четыре линейно независимых вектора $\bar{a}_1, \bar{a}_2, \bar{a}_3, \bar{a}_4$ таких, что $\bar{a}_1^2 < 0, \bar{a}_2^2 > 0, \bar{a}_3^2 > 0, \bar{a}_4^2 > 0$.

Векторы пространства ${}^{1}R_{4}$, скалярные квадраты которых положительны (отрицательны), называются евклидовыми (псевдоевклидовыми) векторами. Ненулевые векторы, скалярные квадраты которых равны нулю, называются изотропными векторами.

Определение ортогональных векторов и длины вектора перенесем из евклидова пространства R_4 в пространство 1R_4 без изменения.

Очевидно, что два ненулевых ортогональных вектора линейно независимы. В пространстве ${}^{1}R_{4}$ возможны только такие пары ортогональных векторов: евклидов и псевдоевклидов, евклидов и изотропный, два евклидовых вектора. Выберем в пространстве ¹*R*₄ ортонормированный базис

$$(ar{e}_1,ar{e}_2,ar{e}_3,ar{e}_4)$$

с матрицей Грама

$$E^{'} = \left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right).$$

Нетрудно показать, что в пространстве ${}^{1}R_{4}$ все ортонормированные базисы состоят из одного псевдоевклидова и трех евклидовых векторов, то есть имеет место закон инерции базисов. Но в подпространствах этого пространства существуют ортогональные базисы, содержащие изотропный вектор. Заметим, что ортогональные системы векторов, содержащие изотропный вектор, не могут быть достроены до ортогонального базиса пространства ${}^{1}R_{4}$.

Скалярное произведение векторов

$$ar{x}^t = (x_1, x_2, x_3, x_4)$$
 и $ar{y}^t = (y_1, y_2, y_3, y_4)$

заданных своими координатами относительно ортонормированного базиса, будет иметь вид

$$\bar{x}^t E' \bar{y} = -x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4,$$

а скалярный квадрат вектора

$$\bar{x}^t = (x_1, x_2, x_3, x_4)$$

— вид

$$\bar{x}^t E' \bar{x} = -x_1^2 + x_2^2 + x_3^2 + x_4^2.$$

Если отложить все векторы пространства 1R_4 от начала координат, то концы изотропных векторов будут лежать на поверхности

$$-x_1^2 + x_2^2 + x_3^2 + x_4^2 = 0,$$

которую называют изотропным гиперконусом.

Концы евклидовых векторов лежат во внешней области, а концы псевдоевклидовых векторов — во внутренней области изотропного гиперконуса.

Прямые псевдоевклидова пространства ${}^{1}R_{4}$ делятся на евклидовы, псевдоевклидовы и изотропные соответственно типу направляющего вектора.

В пространстве ${}^{1}R_{4}$ есть двумерные плоскости (далее плоскости), в которых все векторы евклидовы (их называют евклидовыми плоскостями), плоскости, в которых есть векторы всех трёх типов (их называют псевдоевклидовыми плоскостями) и плоскости, в которых есть только евклидовы и изотропные векторы (они называются изотропными плоскостями). Евклидовы и псевдоевклидовы плоскости называются неизотропными. Тип плоскости будем распознавать по набору из двух ортогональных направляющих векторов \bar{a}_{1}, \bar{a}_{2} .

Плоскость, содержащая вершину изотропного гиперконуса является евклидовой (псевдоевклидовой, изотропной), если она не имеет с изотропным гиперконусом других общих точек (пересекает изотропный гиперконус по двум образующим, касается изотропного гиперконуса). Вполне ортогональные неизотропные плоскости относятся к разным типам [7].

Будем использовать понятие матричной координаты плоскости. Так будем называть матрицу вида

$$A = \begin{pmatrix} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \\ a_1^3 & a_2^3 \\ a_1^4 & a_2^4 \end{pmatrix},$$

столбцами которой являются координаты направляющих векторов $\bar{a_1}, \bar{a_2}$ плоскости.

Рассмотрим трехмерное подпространство пространства ${}^{1}R_{4}$. Выберем в нем ортогональный базис. Два вектора этого базиса будут евклидовыми. Классифицировать трехмерные пространства будем по типу третьего базисного вектора. Таким образом, можно выделить трехмерное евклидово пространство R_3 , трехмерное псевдоевклидово пространство индекса 1 1R_3 и трехмерное изотропное пространство R_3^1 [7].

В пространстве ${}^{1}R_{4}$ любое трехмерное подпространство является либо евклидовым, либо псевдоевклидовым, либо изотропным. Пространства всех трех типов существуют.

Действительно, существование подпространств R_3 и 1R_3 непосредственно следует из типа ортонормированного базиса пространства 1R_4 . Существование изотропного подпространства R_3^1 следует из того, что ортогональным дополнением подпространства $\langle \bar{a} \rangle$, где \bar{a} — изотропный вектор, является подпространство $\langle \bar{a}, \bar{b}, \bar{c} \rangle$, где $\bar{a}, \bar{b}, \bar{c}$ — ортогональная система векторов, причем векторы \bar{b}, \bar{c} евклидовы.

2. Стационарные углы пары плоскостей

В евклидовом пространстве R_4 взаимное расположение пары плоскостей π и τ однозначно задается набором углов φ_1, φ_2 со значениями из $[0, \pi/2]$. Эти углы определяются как стационарные значения углов между произвольными векторами $\bar{a} \in \pi$ и $\bar{b} \in \tau$ [10].

Мы не можем оставить без изменения определение стационарных углов в случае пространства 1R_4 , поскольку в этом пространстве векторы неравноправны и значения углов между ними не всегда можно сравнить между собой. В этом параграфе мы дадим определение и способы вычисления стационарных углов пары плоскостей одного типа псевдоевклидова пространства.

2.1. Случай неизотропных плоскостей. Пусть π и τ — две неизотропные плоскости одного типа пространства ${}^{1}R_{4}$, проходящие через начало координат. Рассмотрим двумерную плоскость, проходящую через начало координат и перпендикулярную каждой из плоскостей π и τ . Угол между прямыми пересечения этой двумерной плоскости с плоскостями π и τ будем называть стационарным углом плоскостей π и τ , а саму двумерную плоскость — угловой плоскостью. **Теорема 1.** Для пары неизотропных плоскостей одного типа всегда существуют две вполне ортогональные угловые плоскости.

Доказательство. Действительно, пусть плоскости π и τ заданы наборами направляющих векторов \bar{a}_1, \bar{a}_2 и \bar{b}_1, \bar{b}_2 соответственно. Тогда

$$A = \begin{pmatrix} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \\ a_1^3 & a_2^3 \\ a_1^4 & a_2^4 \end{pmatrix},$$
$$B = \begin{pmatrix} b_1^1 & b_1^2 \\ b_1^2 & b_2^2 \\ b_1^3 & b_2^3 \\ b_1^4 & b_2^4 \end{pmatrix},$$

— матричные координаты плоскостей π и τ . Произвольная двумерная плоскость, пересекающая данные, задается векторами \bar{c}_1, \bar{c}_2 и имеет матричную координату

$$C = \begin{pmatrix} c_1^1 & c_2^1 \\ c_1^2 & c_2^2 \\ c_1^3 & c_2^3 \\ c_1^3 & c_2^3 \\ c_1^4 & c_2^4 \end{pmatrix},$$

где $\bar{c}_1 = A\Lambda$, $\bar{c}_2 = BM$, $\Lambda^t = (\lambda_1 \lambda_2)$, $M^t = (\mu_1 \mu_2)$. Будем искать ту двумерную плоскость, которая перпендикулярна каждой из плоскостей π и τ . В такой плоскости существуют векторы $\bar{d}_1 = \alpha_1 \bar{c}_1 + \alpha_2 \bar{c}_2$, $\bar{d}_2 = \beta_1 \bar{c}_1 + \beta_2 \bar{c}_2$ такие, что

(1) $\bar{d}_1^t E' \bar{a}_i = 0, \quad \bar{d}_2^t E' \bar{b}_i = 0 (i = 1, 2).$

Систему (1) можно записать в матричном виде

$$(\alpha_1 A \Lambda + \alpha_2 B M)^t E' A = 0, (\beta_1 A \Lambda + \beta_2 B M)^t E' B = 0,$$

или

$$\alpha_1(A^t E' A)\Lambda + \alpha_2(A^t E' B)M = 0, \beta_1(B^t E' A)\Lambda + \beta_2(B^t E' B)M = 0$$

и рассматривать как систему линейных уравнений относительно элементов матриц Λ и M. Для существования ненулевого решения этой системы необходимо выполнение соотношения

$$\begin{vmatrix} \alpha_1(A^t E'A) & \alpha_2(A^t E'B) \\ \beta_1(B^t E'A) & \beta_2(B^t E'B) \end{vmatrix} = 0.$$

Мы можем упростить последнее уравнение, если выберем в данных плоскостях π и τ ортонормированные базисы. Тогда

$$(A^t E' A) = E_2, \qquad (B^t E' B) = E_2,$$

где $E_2 = \operatorname{diag}(1,1)$ в случае евклидовых плоскостей и

$$(A^t E' A) = E'_2, \qquad (B^t E' B) = E'_2,$$

где $E'_2 = \text{diag}(-1,1)$ в случае псевдоевклидовых плоскостей. В случае евклидовых плоскостей имеем:

$$\begin{vmatrix} \alpha_1 & \alpha_2(A^t E' B) \\ \beta_1(B^t E' A) & \beta_2 \end{vmatrix} = 0.$$

Используя метод вычисления определителя блочной матрицы [3, с.59], получим, что последнее равенство равносильно следующему:

$$\left| \alpha_2 \beta_1 (A^t E' B) (B^t E' A) - \alpha_1 \beta_2 E \right| = 0.$$

В случае $\alpha_2\beta_1 \neq 0$ это означает, что величины $\frac{\alpha_1\beta_2}{\alpha_2\beta_1}$ являются собственными значениями матрицы

$$W = (A^t E' B)(B^t E' A).$$

Эта матрица является матрицей самосопряженного оператора евклидовой плоскости.

Для псевдоевклидовых плоскостей матрица

$$W = E'_2(A^t E' B)E'_2(B^t E' A)$$

является матрицей самосопряженного оператора псевдоевклидовой плоскости. Эти матрицы являются частными случаями матрицы из работы Б. А. Розенфельда [9], в которой показано, что собственные значения указанной матрицы являются квадратами косинусов стационарных углов. По каждому из этих значений можно определить нормированные векторы \bar{d}_1 и \bar{d}_2 , а значит и угловые плоскости, причем разным собственным значениям соответствуют вполне ортогональные угловые плоскости. Теорема доказана.

Угол между векторами \bar{d}_1 и \bar{d}_2 равен стационарному углу данных плоскостей. Заметим, что если базисы в плоскостях π и τ являются неортонормированными, то матрица W имеет вид

$$W = (A^{t}E'A)^{-1}(A^{t}E'B)(B^{t}E'B)^{-1}(B^{t}E'A).$$

Перейдем к вычислению величин стационарных углов плоскостей при различном их взаимном расположении. Пусть плоскости π и τ не имеют общих направлений. Так как угловые плоскости вполне ортогональны между собой, то, как указано в параграфе 1, одна из угловых плоскостей будет псевдоевклидовой, а вторая евклидовой и стационарные углы плоскостей определяются из равенств

(2)
$$(d_1, d_2) = ch\varphi_1,$$

(3)
$$(\vec{d}_1, \vec{d}_2) = \cos \varphi_2.$$

Пусть теперь направляющие подпространства плоскостей π и τ имеют общее направление. Если эти плоскости псевдоевклидовы, то они могут пересекаться по евклидовой, псевдоевклидовой или изотропной прямой. В каждом из этих случаев они вложены в пространство ${}^{1}R_{3}$. Если общее направление является евклидовым (псевдоевклидовым), то один из стационарных углов равен нулю, а второй находится по формуле (2) (соответственно (3)). Теперь рассмотрим случай, когда общее направление плоскостей π и τ изотропное. Пусть вектор \bar{c} — общий изотропный вектор. Если \bar{a}_1, \bar{b}_1 — направляющие псевдоевклидовы нормированные векторы плоскостей π и τ соответственно, то ортогональные им направляющие векторы этих плоскостей имеют вид: $\bar{a}_2 = \frac{1}{(\bar{a}_1, \bar{c})} \bar{c} - \bar{a}_1$ и $\bar{b}_2 = \frac{1}{(\bar{b}_1, \bar{c})} \bar{c} - \bar{b}_1$.

Квадратное уравнение для нахождения собственных значений матрицы W имеет вид

(4)
$$\lambda^2 - (TrW)\lambda + |W| = 0.$$

Можно показать, что $|W| = |(A^tB)|^2$, а $TrW = -2|(A^tB)|$. Вычисления показывают, что определитель матрицы (A^tB) не зависит от выбора плоскостей, имеющих общую изотропную прямую, и равен -1. Получаем, что уравнение (4) имеет вид $(\lambda - 1)^2 = 0$, то есть собственные значения $\lambda_{1,2} = 1$. Значит оба стационарных угла равны нулю, что кажется удивительным, поскольку плоскости различны.

Этот факт можно объяснить следующим образом. В пространстве ${}^{1}R_{3}$, определяемом заданными плоскостями, не существует плоскости, перпендикулярной каждой из двух плоскостей с общей изотропной прямой, так как в псевдоевклидовой плоскости не существует вектора, ортогонального изотропному, кроме него самого. Вместе с тем существует евклидова плоскость пространства ${}^{1}R_{4}$, ортогональная общему изотропному вектору двух псевдоевклидовых плоскостей. Она пересекает пространство ${}^{1}R_{3}$, определяемое данными плоскостями, по прямой. Будем считать эту прямую второй угловой плоскостью (вырожденной) и, соответственно, второй стационарный угол тоже равным нулю.

Очевидно, в евклидовом пространстве такой факт не имеет места для несовпадающих плоскостей.

Две пересекающиеся евклидовы плоскости могут быть вложены в одно из пространств: R_3 , 1R_3 , или R_3^1 . Если они принадлежат пространству R_3 , то один из стационарных углов равен нулю, а второй реализуется в евклидовой плоскости и вычисляется по формуле (3). Если плоскости находятся в пространстве ${}^{1}R_{3}$, то невырожденная угловая плоскость является псевдоевклидовой и соответствующий ей стационарный угол вычисляется по формуле (2).

Если эти плоскости принадлежат пространству R_3^1 , то невырожденная угловая плоскость является изотропной и соответствующий ей стационарный угол находится как угол между евклидовыми векторами изотропной плоскости [9].

2.2. Случай изотропных плоскостей. Пусть π и τ — изотропные плоскости, натянутые на векторы \bar{a}_1, \bar{a}_2 и \bar{b}_1, \bar{b}_2 соответственно, причем векторы \bar{a}_1 и \bar{b}_1 — изотропные, \bar{a}_2 и \bar{b}_2 — евклидовы. Для нахождения стационарных углов между ними уже нельзя использовать матрицу

$$W = (A^{t}E'A)^{-1}(A^{t}E'B)(B^{t}E'B)^{-1}(B^{t}E'A),$$

поскольку матрицы $(A^t E' A)$ и $(B^t E' B)$ являются вырожденными. Определим значения стационарных углов между изотропными плоскостями π и τ как предельные значения стационарных углов между евклидовыми плоскостями π_1 и τ_1 , когда π_1 стремится к π , а $\tau_1 - \kappa \tau$.

Выберем единичный евклидов вектор \bar{x} , ортогональный векторам \bar{a}_2 и \bar{b}_2 , существование которого легко доказывается. Рассмотрим векторы $\bar{a}'_1 = \bar{a}_1 + \lambda \bar{x}$ и $\bar{b}'_1 = \bar{b}_1 + \lambda \bar{x}$, где λ — параметр. При стремлении λ к 0 плоскость π_1 , определяемая векторами \bar{a}'_1, \bar{a}_2 , стремится к плоскости π , а плоскость τ_1 , определяемая векторами \bar{b}'_1, \bar{b}_2 , стремится к плоскости τ .

Тогда элементы матрицы $W = (w_{ij})$ будут иметь вид:

$$w_{11} = \frac{((\bar{a}_1, \bar{b}_1) + \lambda((\bar{a}_1, \bar{x}) + (\bar{c}_1, \bar{x})) + \lambda^2)^2}{(\lambda(\bar{a}_1, \bar{x}) + \lambda^2)(\lambda(\bar{b}_1, \bar{x}) + \lambda^2)} + \frac{(\bar{a}_1, \bar{b}_2)^2}{\lambda(\bar{a}_1, \bar{x}) + \lambda^2},$$

$$w_{12} = \frac{((\bar{a}_1, \bar{b}_1) + \lambda((\bar{a}_1, \bar{x}) + (\bar{c}_1, \bar{x})) + \lambda^2)(\bar{a}_2, \bar{b}_1)}{(\lambda(\bar{a}_1, \bar{x}) + \lambda^2)(\lambda(\bar{b}_1, \bar{x}) + \lambda^2)} + \frac{(\bar{a}_1, \bar{b}_2)(\bar{a}_2, \bar{b}_2)}{\lambda(\bar{a}_1, \bar{x}) + \lambda^2},$$

$$w_{21} = \frac{((\bar{a}_1, \bar{b}_1) + \lambda((\bar{a}_1, \bar{x}) + (\bar{c}_1, \bar{x})) + \lambda^2)(\bar{a}_2, \bar{b}_1)}{(\lambda(\bar{b}_1, \bar{x}) + \lambda^2)} + (\bar{a}_1, \bar{b}_2)(\bar{a}_2, \bar{b}_2),$$

$$w_{22} = \frac{(\bar{a}_2, \bar{b}_1)^2}{(\lambda(\bar{b}_1, \bar{x}) + \lambda^2)} + (\bar{a}_2, \bar{b}_2)^2$$

Считая λ малым, получим выражения для собственных значений μ_1 и μ_2 матрицы W в виде

$$\mu_{1,2} = \frac{2\left((\bar{a}_1, \bar{b}_1)(\bar{a}_2, \bar{b}_2) - (\bar{a}_1, \bar{b}_2)(\bar{a}_2, \bar{b}_1)\right)^2 \lambda + O(\lambda^2)}{((\bar{a}_1, \bar{b}_1)^2 \pm (\bar{a}_1, \bar{b}_1)^2)\lambda + O(\lambda^2)}.$$

Переходя к пределу при $\lambda \longrightarrow 0$, получим собственные значения матрицы W для изотропных плоскостей π и τ :

$$\mu_1 = \infty,$$

$$\mu_2 = \left(\frac{(\bar{a}_1, \bar{b}_1)(\bar{a}_2, \bar{b}_2) - (\bar{a}_1, \bar{b}_2)(\bar{a}_2, \bar{b}_1)}{(\bar{a}_1, \bar{b}_1)}\right)^2.$$

Тогда стационарному углу φ_1 можно приписать значение ∞ , а второй стационарный угол находится по формуле

$$\cos\varphi_2 = \frac{(\bar{a}_1, \bar{b}_1)(\bar{a}_2, \bar{b}_2) - (\bar{a}_1, \bar{b}_2)(\bar{a}_2, \bar{b}_1)}{(\bar{a}_1, \bar{b}_1)}.$$

В частном случае две изотропные плоскости могут иметь общее направление. Если плоскости π и τ имеют общее евклидово направление, то ненулевой стационарный угол равен бесконечности, а если общее направление изотропное, то один из углов, определяемый собственным значением μ_2 , вычисляется по формуле $\cos \varphi = (\bar{a}_2, \bar{b}_2)$, а второму углу припишем значение 0 (как углу между совпавшими изотропными векторами).

3. Гладкая структура на множестве плоскостей

Как известно, множество плоскостей евклидова пространства R_4 , проходящих через начало координат, можно превратить в гладкое многообразие, которое называют грассмановым. В работе [2] приведены два способа введения локальных координат плоскости этого многообразия. Ниже предлагается способ введения локальных координат на множествах плоскостей разных типов псевдоевклидова пространства. Рассмотрим в ${}^{1}R_{4}$ множество всех плоскостей, проходящих через начало координат. Будем, по аналогии с евклидовым пространством, называть это множество грассмановым многообразием. В пространстве ${}^{1}R_{4}$ в грассмановом многообразии естественно рассматривать три подмножества: псевдоевклидовых плоскостей, евклидовых плоскостей и изотропных плоскостей, которые будем обозначать ${}^{P}G(2,4)$, ${}^{E}G(2,4)$ и ${}^{Is}G(2,4)$ соответственно.

Рассмотрим множество псевдоевклидовых плоскостей. Зададим в каждой из них два линейно независимых ортогональных вектора. Тогда параметрические уравнения плоскости примут вид

$$x^{i} = \alpha^{i}_{j}t^{j}, i = 1, ..., 4, j = 1, 2,$$

где коэффициенты α_i^i удовлетворяют условиям

$$-\alpha_m^1 \alpha_n^1 + \sum_{i=2}^4 \alpha_m^i \alpha_n^i = \varepsilon_m \delta_{mn},$$

где $\varepsilon_1 = -1, \varepsilon_m = 1, m > 1, m, n = 1, 2.$

Зафиксируем псевдоевклидову плоскость π_0 и рассмотрим множество M псевдоевклидовых плоскостей, проектирующихся без вырождения на плоскость π_0 . Ортонормированный базис $(\bar{e}_1, \bar{e}_2, \bar{e}_3, \bar{e}_4)$ пространства 1R_4 выберем так, чтобы плоскость π_0 определялась базисными векторами \bar{e}_1, \bar{e}_2 . Тогда уравнения плоскости π_0 имеют вид $x^{2+\mu} = 0, \mu = 1, 2$. Бесконечно близкую к π_0 плоскость π можно задать системой уравнений

(5)
$$\begin{cases} x^3 = \xi_1^1 x^1 + \xi_2^1 x^2, \\ x^4 = \xi_1^2 x^1 + \xi_2^2 x^2. \end{cases}$$

Набор действительных чисел $\{\xi_j^{\mu}\}, j = 1, 2$ будем называть локальными координатами псевдоевклидовой плоскости π и задавать матрицей $Z = \{\xi_j^{\mu}\}$. Следовательно, размерность подмногообразия ${}^PG(2,4)$ равна четырем. Аналогично можно ввести локальные координаты евклидовой плоскости пространства 1R_4 .

Рассмотрим и второй способ введения локальных координат плоскости пространства ${}^{1}R_{4}$. Пусть π — псевдоевклидова плоскость и \bar{f}_{1}, \bar{f}_{2} — ортонормированный базис в ней, специализированный условиями $(\bar{f}_{i}, \bar{e}_{j}) = (\bar{f}_{j}, \bar{e}_{i}), i, j = 1, 2$. Относительно этого базиса матричные координаты G и F плоскости имеют такой же вид как и в пространстве R_{4} [2], но условие ортонормированности базиса запишется следующим образом: $F^{t}E'F = E'_{2}$. Если Q — матрица перехода от системы локальных координат $\{\xi^{\mu}_{i}\}$ к системе $\{\eta^{\beta}_{i}\}$, то

$$F = \left(\begin{array}{c} E_2\\ Z \end{array}\right) \cdot Q$$

Тогда

$$E_{2}' = F^{t}E'F = Q^{t} \cdot \begin{pmatrix} E_{2} & Z^{t} \end{pmatrix} \cdot \begin{pmatrix} E_{2}' & 0 \\ 0 & E_{2} \end{pmatrix} \cdot \begin{pmatrix} E_{2} \\ Z \end{pmatrix} \cdot Q =$$
$$= Q^{t} \cdot \begin{pmatrix} E_{2}' & Z^{t}E_{2} \end{pmatrix} \cdot \begin{pmatrix} E_{2} \\ Z \end{pmatrix} \cdot Q = Q^{t}(E_{2}' + Z^{t}Z)Q.$$

Отсюда получим связь между матрицами Q и Z в виде

$$QE_2'Q^t = (E_2' + Z^t Z)^{-1}.$$

Для случая евклидовой плоскости базис выберем так, чтобы векторы (\bar{f}_3, \bar{f}_4) лежали в плоскости, а векторы (\bar{f}_1, \bar{f}_2) были ей ортогональны. Тогда матричная координата G будет иметь вид

$$G = \left(\begin{array}{c} Z \\ E \end{array}\right).$$

И, соответственно, матричная координата этой плоскости после специализации базиса имеет вид

$$F = \left(\begin{array}{c} Z\\ E_2 \end{array}\right) \cdot Q.$$

Аналогичное условие для матрицы Q имеет вид

$$QQ^t = (E_2 + Z^t E_2' Z)^{-1}.$$

Перейдем к построению гладкой структуры на множестве $I^{s}G(2,4)$.

В пространстве ${}^{1}R_{4}$ рассмотрим изотропный гиперконус. Касательное пространство в каждой точке гиперконуса является трехмерным изотропным пространством, ортонормированный базис которого состоит из одного изотропного вектора и двух евклидовых. В касательном пространстве изотропные плоскости образуют пучок, осью которого является образующая гиперконуса.

Таким образом, множество изотропных плоскостей является множеством всех касательных плоскостей изотропного гиперконуса и, следовательно, ${}^{Is}G(2,4)$ можно рассмотреть как касательное расслоение. Базой этого расслоения будет изотропный гиперконус как линейчатое многообразие, а типовым слоем над точкой — пучок касательных плоскостей в точке гиперконуса. Тогда локальные координаты плоскости из ${}^{Is}G(2,4)$ можно записать в виде (u, v, α) , где координаты u, v определяют образующую гиперконуса, α — параметр пучка. Отметим, что размерность подмногообразия ${}^{Is}G(2,4)$ равна трем.

4. Погружение грассманова многообразия

4.1. Плюккеровы координаты плоскости. Каждую плоскость π , проходящую через фиксированную точку, можно задать плюккеровыми координатами. Для этого рассмотрим ортонормированный базис плоскости π , состоящий из векторов

$$\bar{a} = (a_1, a_2, a_3, a_4), b = (b_1, b_2, b_3, b_4),$$

заданных своими координатами относительно ортонормированного базиса пространства ${}^{1}R_{4}$. Составим миноры второго порядка (2 × 4)-матрицы, строками которой есть координаты базисных векторов плоскости π , и обозначим их символами p_{ij}

$$p_{ij} = \left| \begin{array}{cc} a_i & a_j \\ b_i & b_j \end{array} \right|, i, j = 1, \dots, 4, i < j.$$

Упорядоченный набор p_{ij} называют плюккеровыми координатами плоскости [1]. Плюккеровы координаты кососимметричны и удовлетворяют соотношению Плюккера

(6)
$$p_{12}p_{34} - p_{13}p_{24} + p_{14}p_{23} = 0.$$

Плюккеровы координаты псевдоевклидовой, евклидовой и изотропной плоскостей удовлетворяют соотношениям

(7)
$$-(p_{12}^2 + p_{13}^2 + p_{14}^2) + p_{23}^2 + p_{24}^2 + p_{34}^2 = -1,$$

(8)
$$-(p_{12}^2 + p_{13}^2 + p_{14}^2) + p_{23}^2 + p_{24}^2 + p_{34}^2 = 1,$$

(9)
$$-(p_{12}^2 + p_{13}^2 + p_{14}^2) + p_{23}^2 + p_{24}^2 + p_{34}^2 = 0$$

соответственно.

В четырехмерном псевдоевклидовом пространстве 1R_4 плоскость задается шестью плюккеровыми координатами

$$p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34},$$

которые можно считать координатами точки в аффинном пространстве A_6 . Определим в A_6 скалярное произведение векторов $\bar{p} = (p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34})$ и $\bar{q} = (q_{12}, q_{13}, q_{14}, q_{23}, q_{24}, q_{34})$ формулой

$$(\bar{p},\bar{q}) = -(p_{12}q_{12} + p_{13}q_{13} + p_{14}q_{14}) + p_{23}q_{23} + p_{24}q_{24} + p_{34}q_{34}.$$

Это равносильно введению в A_6 структуры псевдоевклидова пространства 3R_6 . Числа $p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}$ являются

декартовыми кординатами в ${}^{3}R_{6}$ относительно ортонормированного базиса с матрицей Грама diag(-1, -1, -1, 1, 1, 1) [9].

Условие (7) означает, что ${}^{P}G(2,4)$ лежит на пятимерной сфере мнимого радиуса пространства ${}^{3}R_{6}$, из условия (8) следует, что подмногообразие ${}^{E}G(2,4)$ принадлежит сфере действительного радиуса пространства ${}^{3}R_{6}$, а из условия (9) вытекает, что ${}^{Is}G(2,4)$ лежит на изотропном гиперконусе пространства ${}^{3}R_{6}$.

4.2. Случай неизотропных плоскостей. Алгебраическая поверхность пространства ${}^{3}R_{6}$, изображающая подмногообразие ${}^{P}G(2,4)$, задается уравнениями (6) и (7). Нормалью к поверхности, заданной неявно уравнением $F(x_{1},\ldots,x_{n}) = 0$ в евклидовом пространстве, является вектор

$$\operatorname{grad} F = \left(\frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_n}\right)$$

В пространстве ${}^{3}R_{6}$ нормалью к поверхности, заданной уравнением $F(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}) = 0$, будет вектор

$$\operatorname{Pgrad} F = \left(-\frac{\partial F}{\partial x_1}, -\frac{\partial F}{\partial x_2}, -\frac{\partial F}{\partial x_3}, \frac{\partial F}{\partial x_4}, \frac{\partial F}{\partial x_5}, \frac{\partial F}{\partial x_6}\right)$$

который будем называть псевдоградиентом. Поэтому нормалями к подмногообразию ${}^{P}G(2,4)$ являются линейные комбинации линейно независимых векторов

$$\bar{p} = (p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}),$$

$$\bar{q} = (-p_{34}, p_{24}, -p_{23}, p_{14}, -p_{13}, p_{12}).$$

Непосредственно проверяется, что эти нормали ортогональны и $\bar{p}^2 = -1, \bar{q}^2 = 1.$

Подмногообразие ${}^{E}G(2,4)$ можно погрузить в ${}^{3}R_{6}$ в виде алгебраической поверхности с уравнениями (6) и (8). Векторы \bar{p} и \bar{q} являются нормалями к этой поверхности, причем $\bar{p}^{2} = 1, \bar{q}^{2} = -1.$

Так как нормальные плоскости к алгебраическим поверхностям, изображающим подмногообразия ${}^{P}G(2,4)$ и ${}^{E}G(2,4)$, являются псевдоевклидовыми, то метрика каждой из этих поверхностей имеет сигнатуру (--++).

4.3. Случай изотропных 2-плоскостей. Подмногообразие ${}^{Is}G(2,4)$ является трехмерным, поэтому его погружение в виде алгебраической поверхности в пространство ${}^{3}R_{6}$ нужно задать 6-3=3 уравнениями. В качестве таких уравнений можно взять

$$F_1 = -(p_{12}^2 + p_{13}^2 + p_{14}^2) + p_{23}^2 + p_{24}^2 + p_{34}^2 = 0,$$

$$F_2 = p_{12}p_{34} - p_{13}p_{24} + p_{14}p_{23} = 0,$$

и, например, соотношение

$$F_3 = p_{12}^2 + p_{13}^2 + p_{14}^2 + p_{23}^2 + p_{24}^2 + p_{34}^2 - 1 = 0$$

которое будем называть условием нормировки. Псевдоградиенты функций F_1, F_2, F_3 имеют вид

Pgrad
$$F_1 = (p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}),$$

Pgrad $F_2 = (-p_{34}, p_{24}, -p_{23}, p_{14}, -p_{13}, p_{12}),$
Pgrad $F_3 = (-p_{12}, -p_{13}, -p_{14}, p_{23}, p_{24}, p_{34})$

и являются нормалями к подмногообразию ${}^{Is}G(2,4)$.

Перейдем к следующей ортогональной системе нормалей:

$$\bar{n}_1 = (0, 0, 0, p_{23}, p_{24}, p_{34}),$$

$$\bar{n}_2 = (p_{12}, p_{13}, p_{14}, 0, 0, 0),$$

$$\bar{n}_3 = (-p_{34}, p_{24}, -p_{23}, p_{14}, -p_{13}, p_{12}),$$

в которой $\bar{n}_1^2 > 0, \ \bar{n}_2^2 < 0, \ \bar{n}_3^2 = 0.$

Так как ортогональный базис касательного пространства к гиперконусу (9) состоит из двух псевдоевклидовых, двух евклидовых и изотропного вектора, то алгебраическая поверхность, изображающая подмногообразие ${}^{Is}G(2,4)$, имеет метрику сигнатуры (-+0).

5. Метрика в многообразии плоскостей

В евклидовом пространстве в грассмановом многообразии метрика определяется как сумма квадратов стационарных углов [10].

Покажем, что в грассмановом многообразии псевдоевклидова пространства можно ввести метрику, которая также связана со стационарными углами.

5.1. Случай неизотропных плоскостей. Метрику на грассмановом многообразии неизотропных плоскостей псевдоевклидова пространства ${}^{1}R_{4}$ определим формулой

(10)
$$ds^{2} = Tr[(E_{2} + ZE_{2}'Z^{t})^{-1}dZ(E_{2}' + Z^{t}Z)^{-1}dZ^{t}]$$

для псевдоевклидовых плоскостей и формулой

(11)
$$ds^{2} = Tr[(E_{2}' + ZZ^{t})^{-1}dZ(E_{2} + Z^{t}E_{2}'Z)^{-1}dZ^{t}]$$

для евклидовых плоскостей.

Покажем, что данные определения являются естественными, и в этой метрике квадрат расстояния между достаточно близкими плоскостями выражается через квадраты стационарных углов.

Рассмотрим две псевдоевклидовы плоскости. Пусть стационарные углы между ними равны φ_1, φ_2 . Зафиксируем одну из плоскостей и рассмотрим такое однопараметрическое семейство плоскостей, которое содержит две данные плоскости и стационарные углы между произвольной плоскостью семейства и фиксированной плоскостью пропорциональны. Такие семейства называют геликоидами [8].

Выберем ортонормированный базис $\bar{e}_1, \bar{e}_2, \bar{e}_3, \bar{e}_4$ аналогично тому, как описано в работе [1, с.300]. В угловых плоскостях выберем векторы \bar{e}_1, \bar{e}_2 , лежащие в фиксированной плоскости семейства, и ортогональные им векторы \bar{e}_3, \bar{e}_4 . Так как угловые плоскости вполне ортогональны, то получим набор попарно ортогональных векторов. Тогда направляющие векторы произвольной плоскости семейства псевдоевклидовых плоскостей имеют вид

$$\bar{x}_1 = \operatorname{ch}(\varphi_1 t)\bar{e}_1 + \operatorname{sh}(\varphi_1 t)\bar{e}_3,$$

$$\bar{x}_2 = \cos(\varphi_2 t)\bar{e}_2 + \sin(\varphi_2 t)\bar{e}_4, t \in [0, 1].$$

В выбранном базисе матричная координата A и матрица Z локальных координат произвольной плоскости семейства имеют вид

$$A = \begin{pmatrix} ch(\varphi_1 t) & 0\\ 0 & cos(\varphi_2 t)\\ sh(\varphi_1 t) & 0\\ 0 & sin(\varphi_2 t) \end{pmatrix}, Z = \begin{pmatrix} th(\varphi_1 t) & 0\\ 0 & tg(\varphi_2 t) \end{pmatrix}.$$

После подстановки матрицы Z в формулу (10) получаем $ds^2 = (-\varphi_1^2 + \varphi_2^2) dt^2,$ а значит

(12)
$$s = \int_0^1 \sqrt{-\varphi_1^2 + \varphi_2^2} dt = \sqrt{-\varphi_1^2 + \varphi_2^2}$$

Для семейства евклидовых плоскостей базис выберем так, чтобы направляющие векторы произвольной плоскости имели вид

$$\bar{x}_1 = \operatorname{ch}(\varphi_1 t)\bar{e}_3 + \operatorname{sh}(\varphi_1 t)\bar{e}_1,$$

$$\bar{x}_2 = \cos(\varphi_2 t)\bar{e}_4 + \sin(\varphi_2 t)\bar{e}_2.$$

Аналогичные вычисления опять приводят к (12).

5.2. Случай изотропных плоскостей. В подмногообразии изотропных плоскостей метрику определим следующей формулой

(13)
$$ds^{2} = \lim_{k \to \infty} Tr[(E_{2}^{''} + ZE_{2}^{''}Z^{t})^{-1}dZ(E_{2}^{''} + Z^{t}E_{2}^{''}Z)^{-1}dZ^{t}],$$
rge $E_{2}^{''} = \operatorname{diag}(k, 1).$

Покажем, что эту метрику можно выразить через стационарные углы. Рассмотрим множество изотропных плоскостей, направляющие векторы которых имеют вид

$$\bar{x}_1 = f(t)\bar{e}_1 + g(t)\bar{e}_3,$$

$$\bar{x}_2 = \cos(\varphi_2 t)\bar{e}_2 + \sin(\varphi_2 t)\bar{e}_4,$$

где условие $-f^2(t) + g^2(t) = 0$ обеспечивает изотропность вектора \bar{x}_1 . Это возможно относительно базиса пространства, векторы \bar{e}_2, \bar{e}_4 которого расположены в евклидовой угловой плоскости, а векторы \bar{e}_1, \bar{e}_3 — в в ее ортогональном дополнении.

Матричная координата плоскости будет иметь вид

$$A = \begin{pmatrix} f(t) & 0\\ 0 & \cos(\varphi_2 t)\\ g(t) & 0\\ 0 & \sin(\varphi_2 t) \end{pmatrix},$$

а матрица локальных координат — вид

$$Z = \left(\begin{array}{cc} p(t) & 0\\ 0 & tg(\varphi_2 t) \end{array}\right),$$

где $p(t) = \frac{f(t)}{g(t)}$. Подставляя матрицу Z в формулу (13), получаем формулу

$$s = \varphi_2$$

для расстояния между изотропными плоскостями.

Таким образом, как и в случае грассманова многообразия евклидова пространства, в подмногообразиях ${}^{P}G(2,4)$, ${}^{E}G(2,4)$, ${}^{Is}G(2,4)$ имеем метрику, связанную со стационарными углами.

Список литературы

- [1] Аминов Ю.А. Геометрия подмногообразий // К.: Наукова думка, 2002.– 467с.
- [2] Борисенко А.А., Николаевский Ю.А Многообразия Грассмана и грассманов образ подмногообразий. //УМН – 1991. – **46(2)**. – С.41-80.
- [3] Гантмахер Ф. Р. Теория матриц // М.: Наука 1967. 575с.

- [4] Козлов С.Е. Топология и Лоренц-инвариантная псевдориманова метрика многообразия направлений в физическом пространстве //Зап. научн. семин. ПОМИ – 1997. – 246. – С.141-151.
- [5] Leichtweiss K. Zur Riemannschen Geometrie in Grassmannschen Mannigfaltigkeiten. // Math.Z. - 1961 - 76 (4). - Pp. 334 - 366.
- [6] Маазикас И. К римановой геометрии грассмановых многообразий неизотропных подпространств псевдоевклидова пространства // Ученые записки Тартуского университета – 1974. – 342. – С.76-82.
- [7] Рашевский Риманова геометрия и тензорный анализ // М.: Наука. 1967. – 664С.
- [8] Розенфельд Б.А. Метрика и аффинная связность в пространствах плоскостей, сфер и квадрик.// ДАН СССР. 1947. **57**(2). С.543–546.
- [9] Розенфельд Б.А. Неевклидовы пространства,// М.: Наука. 1969. 547С.
- [10] Wong Y. C. Differential geometry of Grassman manifolds.// Proc. Math.Acad. Sci. USA. - 1967 - 51(6). - Pp. 589 - 594.