## Д.Н.Тогобицкая, А.Ф.Хамхотько, Ю.М.Лихачев, Д.А.Степаненко

## ИСПОЛЬЗОВАНИЕ БАЗЫ ВИСКОЗИМЕТРИЧЕСКИХ ДАННЫХ ДЛЯ РАСЧЕТА КРИСТАЛЛИЗАЦИОННОЙ СПОСОБНОСТИ МЕТАЛЛУРГИЧЕСКИХ ШЛАКОВ

Разработана методика оценки перехода шлаковых расплавов из гомогенного состояния в гетерогенное, включающая определение температурного интервала затвердевания расплавов, энергии активации вязкого течения на различных этапах, количества выделяющейся твердой фазы в процессе кристаллизации, максимальной линейной скорости кристаллизации и соответствующей температуры.

Введение. Одной из важнейших характеристик оксидных расплавов является вязкость. Она в значительной мере определяет рафинирующую способность шлаков в доменном и сталеплавильном процессах, защитные свойства технологических стеклопокрытий и стеклосмазок для горячей деформации металлов, процессы формирования структуры и свойств стеклокристаллических материалов и т.д.

Особенно важное значение как с теоретической, так и с практической точек зрения имеют вискозиметрические характеристики оксидных материалов в диапазоне температур ликвидус – солидус, в котором происходит их плавление или кристаллизация, существенно влияющие на скорость и полноту протекающих процессов. Так, в области высоких температур, т.е. при значительном перегреве выше температуры ликвидуса, различие в вязкости металлургических шлаков заметно уменьшаются. В процессе же охлаждения, в особенности вблизи температуры солидуса, металлургические шлаки в зависимости от химического и минералогического состава обнаруживают значительные различия вязкости.

**Изложение основных материалов исследования.** В связи с изложенным анализ зависимостей вязкости различных по составу шлаков от температуры может предоставить широкую информацию для оценки процессов перехода многокомпонентных металлургических шлаков из гомогенного состояния в гетерогенное.

Энергия активации вязкого течения в интервале кристаллизации шлакового расплава связана с изменением структуры расплава и определяет его кристаллизационную способность, а именно скорость образования центров кристаллизации и линейную скорость роста кристаллов. При этом наиболее важными показателями являются температура ликвидус ( $T_{\rm J}$ ) как предельная температура существования кристаллизации  $\phi_{\rm TB}$ , максимальная линейная скорость кристаллизации  $V_{\rm max}$  и соответствующая ей температура  $T_{\rm V}$ .

Созданная в ИЧМ база данных «Шлак» в рамках Банка данных «Металлургия» содержит фактографическую информацию о вискозиметрических исследованиях свыше 5000 составов различных шлаков, стекол и других аналогичных оксидных материалов [1]. Причем, наиболее ценной и интересной для анализа является информация, представленная в табличном виде без сглаживания и математической интерпретации.

Рассмотрим возможность использования вискозиметрических характеристик для определения вышеупомянутых показателей на примере доменных шлаков различной основности по данным [2] (табл. 1).

| N⁰  | Содержание, мас. % |       |      |           |      |      |      | CaO     |
|-----|--------------------|-------|------|-----------|------|------|------|---------|
| п/п | SiO <sub>2</sub>   | CaO   | MgO  | $Al_2O_3$ | FeO  | MnO  | S    | $SiO_2$ |
| 1   | 41,74              | 46,86 | 3,08 | 4,83      | 0,68 | 1,90 | 1,10 | 1,12    |
| 2   | 41,57              | 33,95 | 9,66 | 8,08      | 0,67 | 2,49 | 0,62 | 0,82    |
| 3   | 33,06              | 47,20 | 6,87 | 11,8      | 0,44 | 0,39 | 2,55 | 1,43    |

Таблица 1. Химический состав доменных шлаков

В работе [2] приведена вязкость шлаков (η, Па·с), измеренная при их охлаждении от  $1600^{0}$ C до  $1250^{0}$ C, и температура при резком увеличении вязкости до величины η=4 Па·с, которая фактически соответствует T солидус. Нами дополнительно рассчитана величина lgŋ и  $10000 \cdot (T+273)^{-1}$ , которые предназначены для расчета энергии активации и определения T ликвидус (табл. 2) графическим методом.

| T, <sup>0</sup> C  |                                              | 1600   | 1550   | 1500   | 1450   | 1400   | 1350   | 1300   | 1280   | 1250  | $T_{4}^{0}, C$ |
|--------------------|----------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|----------------|
| 10 <sup>4</sup> ∙T | <sup>-1</sup> , <sup>0</sup> K <sup>-1</sup> | 5,339  | 5,485  | 5,64   | 5,804  | 5,977  | 6,161  | 6,357  | 6,489  | 6,566 |                |
| №                  | η,Па∙с                                       | 0,16   | 0,19   | 0,23   | 0,27   | 0,35   | 0,51   | 0,73   | 0,89   | 1,22  | 1200           |
| 1                  | lgη                                          | -0,796 | -0,721 | -0,638 | -0,569 | -0,456 | -0,292 | -0,137 | -0,051 | 0,086 |                |
| №                  | η,Па∙с                                       | 0,27   | 0,3    | 0,34   | 0,4    | 0,48   | 0,62   | 0,9    | 1,07   | 1,52  | 1156           |
| 2                  | lgη                                          | -0,569 | -0,523 | -0,468 | -0,398 | -0,319 | -0,208 | -0,046 | 0,029  | 0,182 |                |
| №                  | η,Па∙с                                       | 0,17   | 0,2    | 0,25   | 0,42   | 0,69   | 2,55   |        |        |       | 1342           |
| 3                  | lgη                                          | -0,77  | -0,699 | -0,602 | -0,327 | -0,161 | 0,406  |        |        |       |                |

Таблица 2. Вязкость доменных шлаков

На рис.1 представлена вязкость шлаков №№ 1–3 различной основности в координатах  $\eta$  – Т в виде плавных кривых. Шлаки №1 и №3 с основностью более 1,1, маловязкие при высоких температурах 1600–1500<sup>0</sup>С, имеют температуру затвердевания  $T_C$  соответственно 1200<sup>0</sup>С и 1342<sup>0</sup>С. Особенно быстро затвердевает высокоосновный шлак №3. Низкоосновный шлак №2 при высоких температурах более вязкий (в 1,5 – 1,6 раза), однако он более легкоплавкий ( $T_C = 1156^0$ С).

Преобразование координат в  $\lg \eta - \frac{10^4}{T}$ , как показано на рис.2 более информативно, позволяет рассчитать активационные характеристики вязкого течения шлаков и более обстоятельно проанализировать их поведение в диапазоне охлаждения и кристаллизации.



Рис. 1. Вязкость шлаков в координатах η – Т. Цифры у кривых соответствуют позициям табл. 1.

Как видно из рис.2, в координатах  $lg\eta$ –  $\frac{10^4}{T}$  зависимость логарифма вязкости каждого из шлаков разной

основности от обратной температуры трансформируется из плавной кривой (рис.1) в ломаную прямую с тремя прямолинейными участками и двумя перегибами. Прямая линия в высокотемпературной области соответствует гомогенному расплаву. Первая точка перегиба соответствует Т ликвидус, когда в расплаве изученных шлаков системы **CaO-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-MgO** появляются первые кристаллы самого тугоплавкого соединения – ларнита (2CaO·SiO<sub>2</sub>,  $T_{пл}$ =2130<sup>0</sup>C). Второй прямолинейный участок в области средних температур соответствует кристаллизации расплава практически с постоянной скоростью, которая резко увеличивается после второго перегиба. По данным [2] кристаллизация шлаков практически завершается при достижении вязкости 4 Па·с.



Рис.2. Вязкость шлака в координатах  $\lg \eta - \frac{10^4}{T}$ . Цифры у кривых соответствуют позициям табл.1.

Прямолинейные участки зависимости  $lg\eta$  от  $\frac{10^4}{T}$  свидетельствуют об отсутствии структурных изменений в расплавах и возможности вычисления

энергии активации вязкого течения E<sub>η</sub> по формуле, предложенной в работе [3], как показано в табл.3:

202

$$E_{\eta} = T_1 \cdot T_2 \frac{19,155 \cdot (\lg \eta_1 - \lg \eta_2)}{1000(T_2 - T_1)}, \ \kappa Дж/моль$$
(1)

|      |                             | Участок                     |              |               |  |  |  |
|------|-----------------------------|-----------------------------|--------------|---------------|--|--|--|
| Шлак | Свойство                    | Высоко-                     | Средне-      | Низко-        |  |  |  |
| N⁰   |                             | температурный температурный |              | температур-   |  |  |  |
|      |                             |                             |              | ный           |  |  |  |
| 1    | $T_2 - T_1, {}^{0}K$        | 1873 - 1663                 | 1663 - 1528  | 1528 - 1473   |  |  |  |
|      | $\lg \eta_1 - \lg \eta_2$ , | (-0,44)-(-                  | 0,04–(–0,44) | 0,602-0,04    |  |  |  |
|      | Па•с                        | 0,796)                      |              |               |  |  |  |
|      | Т <sub>перехода</sub>       | Тл=1663                     | Тп=1528      | Tc=1473       |  |  |  |
|      | Еη, кДж/моль                | 101,1                       | 173,1        | 440,5         |  |  |  |
| 2    | $T_2 - T_1, {}^{0}K$        | 1873 - 1698                 | 1698 - 1593  | 1593-1429     |  |  |  |
|      | $lg\eta_1 - lg\eta_2$ ,     | (-0,37)-(-                  | (-0,15)-(-   | 0,602–(-0,15) |  |  |  |
|      | Па∙с                        | 0,569)                      | 0,37)        |               |  |  |  |
|      | Т <sub>перехода</sub>       | Тл=1698                     | Тп=1593      | Tc=1429       |  |  |  |
|      | Еη, кДж/моль                | 69,3                        | 108,6        | 199,9         |  |  |  |
| 3    | $T_2 - T_1, {}^{0}K$        | 1873-1780                   | 1780 - 1665  | 1665–1615     |  |  |  |
|      | $lg\eta_1 - lg\eta_2$ ,     | (-0,63)-(-                  | (-0,12)-(-   | 0,602–(–0,12) |  |  |  |
|      | Па•с                        | 0,77)                       | 0,63)        |               |  |  |  |
|      | Т <sub>перехода</sub>       | Тл=1780                     | Тп=1665      | Tc=1615       |  |  |  |
|      | Еη, кДж/моль                | 96,1                        | 251,8        | 743,8         |  |  |  |

Таблица 3. Активационные характеристики доменных шлаков.

С увеличением основности шлаков их энергия активации вязкого течения возрастает. Так, у шлака №3 с основностью  $CaO/SiO_2=1,43$  по сравнению со шлаком №2 энергия активации вязкого течения в высокотемпературной области гомогенного состояния расплава увеличилась на 40%, в среднетемпературной области в 2,3 раза и в низкотемпературной – в 3,7 раза. Интервал кристаллизации этого шлака уменьшился до  $165^{0}$ К. Эти активационные характеристики свидетельствуют о повышенной склонности высокоосновного шлака №3 к кристаллизации и низкой стабильности этого «короткого» шлака в ходе доменной плавки. Шлак №2 с основностью  $CaO/SiO_2=1,12$  по активационным характеристикам и интервалу кристаллизации занимает промежуточное положение между шлаками №2 и №3.

Рассмотрим влияние гетерогенности на вязкость шлаков. Оценке влияния количества выделяющейся твердой фазы на вязкость жидкости и решению обратной задачи посвящен ряд исследований. Так, Эйнштейном показано, что связь между вязкостью дисперсной системы ( $\eta$ ) и объемной долей дисперсной фазы ( $\varphi_{\rm rs}$ ) в виде частиц сферической формы независимо от их размера описывается соотношением [4]:

$$\eta = \eta_{o} (1 + 2, 5 \cdot \boldsymbol{\varphi}_{\scriptscriptstyle TB}), \qquad (2)$$

где  $\eta_o$  – вязкость чистой дисперсной среды.

Это уравнение, как показано в работе [5], справедливо при малых значениях  $\varphi_{_{TR}} \leq 0,05$ .

В случае концентрированных дисперсных систем использование теории Эйнштейна позволило получить [6]:

$$\eta = \eta_{o} \cdot \exp(\alpha \cdot \varphi_{\rm TB}), \qquad (3)$$

где *а* – некоторый коэффициент.

При изучении влияния степени гетерогенности на вязкость синтетического шлака мелилитового состава в работе [7] было получено аналогичное уравнение, в котором величина  $\alpha$ =0,073, а содержание твердой фазы  $\varphi_{\rm TB}$  представлено в %. После его преобразования получаем для расчета  $\varphi_{\rm TB}$  уравнение:

$$\varphi_{\rm TB} = \frac{\ln\left(\frac{\eta}{\eta_0}\right)}{0.073} \tag{4}$$

В работах [8, 9] исследованы особенности вязкого течения металлических, солевых и оксидных расплавов в рамках представлений о структурной микронеоднородности, когда при больших перегревах расплавов они становятся структурно однородными (разупорядоченными), а при понижении температуры в них наряду с разупорядоченной структурой появляются микрообъемы с упорядоченным расположением частиц, близким к таковому в кристаллической решетке (кластеры). Очевидно, применительно к шлаковым расплавам разупорядоченную структуру при их перегреве можно трактовать как гомогенную. Тогда появление при охлаждении расплава упорядоченных группировок соответствует выпадению в гомогенном расплаве твердых частиц, и расплав становится гетерогенным.

Температурная зависимость вязкости в координатах  $\eta$ -Т (рис. 1) состоит из линейного высокотемпературного и экспоненциального низкотемпературного участков. Температура начала линейного участка по данным [8, 9] является температурой полного разупорядочения (гомогенизации) расплава Т<sub>раз.</sub>. Она же практически является температурой ликвидуса (Т<sub>раз.</sub>=Т<sub>лик</sub>). Экстраполяция линейного участка в область низких температур вплоть до температуры солидус расплава (T<sub>C</sub>) дает гипотетическую температурную зависимость вязкости гомогенного расплава. Учитывая изложенное, с привлечением экстраполяционного метода и соотношений, представленных в [8, 9]:

$$\varphi_{\rm o} + \varphi_{\rm \tiny TB} = 1 \tag{5}$$

$$\varphi_{\rm o} \approx \frac{\eta_{\rm o}}{\eta},$$
 (6)

получим:

$$\varphi_{\rm TB} = \frac{(\eta - \eta_0)}{\eta} \cdot 100, \text{ of. \%},$$
 (7)

где  $\varphi_0$  и  $\varphi_{_{TB}}$  – объемные доли соответственно гомогенной и дисперсной (твердой) фаз расплава,  $\eta_0$  и  $\eta$  – вязкость соответственно гомогенного и гетерогенного расплава.

Полученное уравнение (7) позволяет по вискозиметрическим данным определить количество выделяющейся твердой фазы во всем температурном диапазоне измерения вязкости. Уравнения (4) и (7) использованы нами для сравнительной оценки количества твердой фазы, кристаллизующейся при различных температурах в процессе охлаждения при измерении вязкости шлаковых расплавов различной основности (табл.4).

Величины  $\eta$  соответствуют экспериментальным данным, а  $\eta_o$  – соответствуют таковым лишь на прямолинейных участках зависимостей  $\eta$  – T, а при температурах ниже  $T_{\Lambda}$  получены экстраполяцией этих участков в область низких температур вплоть до  $T_C$  (рис.1).

Расчетные данные свидетельствуют о наименьшей кристаллизационной способности кислого шлака №2 и максимальной – высокоосновного шлака №3. Эти данные корреспондируются с активационными характеристиками шлаков.

Что касается расчетных величин  $\varphi_{\rm TB}$ , то полученные по формуле (7) они в 3–7 раз больше, чем по формуле (4), при симбатном их изменении с температурой.

По нашему мнению, расчет  $\varphi_{\rm TB}$  по формуле (7) является более достоверным, что подтверждается в работе [9] на реальных оксидных соединениях, поэтому может быть рекомендован для практического использования при оценке кристаллизационной способности шлаковых расплавов.

Для металлургической промышленности, где кристаллизация шлаков в технологическом процессе, например в доменном, является нежелательным явлением, а также для технологии переработки шлаков в закристаллизованные строительные материалы (шлакоситаллы, пемза и др.), важно знать основные параметры, характеризующие кристаллизационную способность шлаковых расплавов, а именно температуру ликвидуса  $T_{\Lambda}$ , максимальную скорость кристаллизации  $V_{max}$  и соответствующую ей температуру  $T_{V_{max}}$ .

| Шлак | Свой-                                | T, <sup>0</sup> C |      |      |      |      |      |      |      |       |
|------|--------------------------------------|-------------------|------|------|------|------|------|------|------|-------|
| №    | ство                                 | 1600              | 1550 | 1500 | 1450 | 1400 | 1350 | 1300 | 1250 | $T_C$ |
| 1    | η,Па∙с                               | 0,16              | 0,19 | 0,23 | 0,27 | 0,35 | 0,51 | 0,73 | 1,22 | 4,0   |
|      | $η_o$ ,Πa·c                          | 0,16              | 0,19 | 0,23 | 0,27 | 0,31 | 0,35 | 0,38 | 0,42 | 0,46  |
|      | <i>Ф</i> <sub>тв</sub> ,<br>об.%(4)  | 0                 | 0    | 0    | 0    | 1,7  | 5,2  | 8,9  | 14,6 | 29,6  |
|      | <i>Ф</i> <sub>тв</sub> ,<br>об. %(7) | 0                 | 0    | 0    | 0    | 11,5 | 31,5 | 48   | 65,5 | 88,5  |
|      | η,Па∙с                               | 0,27              | 0,3  | 0,34 | 0,4  | 0,48 | 0,62 | 0,9  | 1,52 | 4,0   |
|      | $η_o$ ,Πa·c                          | 0,27              | 0,3  | 0,34 | 0,4  | 0,44 | 0,48 | 0,53 | 0,58 | 0,66  |
| 2    | <i>Ф</i> <sub>тв</sub> , об.<br>%(4) | 0                 | 0    | 0    | 0    | 1,2  | 3,5  | 7,3  | 13,2 | 24,7  |
|      | <i>Ф</i> <sub>тв</sub> , об.<br>%(4) | 0                 | 0    | 0    | 0    | 8,3  | 22,6 | 41,1 | 61,9 | 83,5  |
| 3    | η,Па∙с                               | 0,17              | 0,2  | 0,25 | 0,42 | 0,69 | 2,55 |      |      | 4,0   |
|      | $η_o$ ,Πa·c                          | 0,17              | 0,2  | 0,25 | 0,3  | 0,35 | 0,38 |      |      | 0,4   |
|      | <i>Ф</i> <sub>тв</sub> , об.<br>%(4) | 0                 | 0    | 0    | 4,6  | 9,3  | 26,1 |      |      | 31,5  |
|      | <i>Ф</i> <sub>тв</sub> ,<br>об.%(4)  | 0                 | 0    | 0    | 28,6 | 49,3 | 85,1 |      |      | 90    |

Таблица 4. Расчет количества твердой фазы при охлаждении шлаковых расплавов

В работах Шелудякова Л.Н. с соавторами глубоко проанализирована связь кристаллизационной способности оксидных расплавов с их вязкостью, которая была впервые отмечена Тамманом. В дальнейшем в результате развития работ Тернбала, Коэна, Кумма и Шольце Шелудяковым Л.Н. с сотрудниками предложены уравнения для расчета  $V_{max}$ , мк/мин и  $T_{V_{max}}$ , <sup>0</sup>К [10, 11]:

$$\lg V_{max} = 4,7 - \lg \eta_{T_{JI}} \tag{8}$$

$$T_{\text{Vmax}} = T_{\Pi} \left( 1 - \frac{RT_{\Pi}}{E_{\eta} + RT_{\Pi}} \right)$$
(9)

где  $T_{\Pi}$  – температура ликвидус, <sup>0</sup>К;

 $\eta_{T_{\pi}}$  – вязкость при температуре ликвидус, пуаз;

 $E_{\eta}$  – энергия активации вязкого течения в высокотемпературной области, Дж/моль;

*R* – газовая постоянная, равная 8,32036 Дж/моль-град.

Результаты расчета кристаллизационной способности доменных шлаков различной основности по уравнениям (8) и (9) с использованием ранее полученных исходных величин приведены в табл. 5.

| Шлак № | CaO/SiO <sub>2</sub> | $V_{ m max}$ , мк/мин | T <sub>Vmax</sub> , <sup>0</sup> K |
|--------|----------------------|-----------------------|------------------------------------|
| 1      | 1,12                 | 13190                 | 1463                               |
| 2      | 0,82                 | 11360                 | 1410                               |
| 3      | 1,43                 | 20050                 | 1542                               |

Таблица 5. Кристаллизационная способность доменных шлаков

Как видно, самая низкая величина максимальной скорости роста кристаллов и соответствующая ей температура – у кислого шлака, а самые высокие величины – у высокоосновного. Следовательно кристаллизационная способность шлаков увеличивается с ростом их основности, что соответствует полученным ранее выводам на основе расчетов энергии активации вязкого течения и количества твердой фазы в расплавах.

Таким образом, показана возможность использования базы данных о свойствах металлургических шлаков для описания процессов перехода их из гомогенного состояния в гетерогенное вплоть до полной кристаллизации. В частности, для любого конкретного оксидного расплава по температурной зависимости вязкости представляется возможность оценить ряд характеристик процесса его кристаллизации.

Использование методики модельного описания структуры оксидных расплавов с позиций теории направленной химической связи, разработанной Приходько Э.В. [12], позволяет на основе экспериментальной информации, сконцентрированной в соответствующих базах данных, прогнозировать по химическому составу целый ряд свойств, как показано нами в работе [13].

Рассмотрим возможность использования этого подхода для обобщения кристаллизационной способности шлаков различных составов. Для этого используем данные, опубликованные в работах Кручинина Ю.Д. с соавторами [14, 15]. В работе [14] исследованы синтетические доменные шлаки системы CaO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> в диапазоне содержания (мас. %): CaO – 39–49; Al<sub>2</sub>O<sub>3</sub> – 13–20,5; SiO<sub>2</sub> – 35,5–40,5 с добавками 3% и 10% MgO и по 1,5% одного из оксидов: FeO; MnO;K<sub>2</sub>O (всего 45 составов). В работе [15] – натуральные доменные шлаки ряда уральских заводов в диапазоне содержания компонентов (мас. %): CaO – 31,6–44,6; Al<sub>2</sub>O<sub>3</sub> – 10–24,7; SiO<sub>2</sub> – 32,24–44,2; MgO – 1,22–9,92; MnO – 0,27–1,41; FeO – 0,46–1,1; TiO<sub>2</sub> – 0–6,7; Na<sub>2</sub>O – 0–0,45; K<sub>2</sub>O – 0–1,31; S – 0,28–1,2 (всего 17 составов).

Диапазон изменения величины максимальной линейной скорости кристаллизации ( $V_{max}$ ) объединенного массива синтетических и натуральных шлаков оказался довольно широким и составил 10,3 – 4090 мк/мин, то есть максимальная величина отличается от минимальной примерно на 2,6 порядка. Диапазон величин температур ликвидуса ( $T_{\Pi}$ ) составил 1574–1776<sup>0</sup>К. Несмотря на столь существенный диапазон изменения кристаллизационной способности исследованных доменных шлаков, использование предложенной в [12] методики позволило получить уравнения для прогнозирования  $V_{max}$  и  $T_{\Pi}$  по химическому составу, «свернутому» в виде модельных параметров, с достаточно высокой точностью для практического использования.

$$lg V_{\text{max}}, (MK/MUH) = -28,424 - 0,618\Delta e + 42,388\rho,$$

$$R = 0,865; \quad \mu = 26,4; \quad S_{\text{KB}} = 12,9\%$$

$$T_{\text{J}}, {}^{0} K = -523,3 + 72,984\Delta e + 3390,435\rho,$$

$$R = 0.852; \quad \mu = 244; \quad S = -1.89\%$$
(11)

$$R = 0.853; \quad \mu = 24.1; \quad S_{\rm KB} = 1.8\%$$

где ∆е и р – химический эквивалент и стехиометрия шлака соответственно [12];

R – коэффициент корреляции;  $\mu$  – критерий надежности;  $S_{\kappa B}$  – остаточное среднеквадратичное отклонение.

## Выводы

1. Показаны возможности использования базы вискозиметрических данных о металлургических шлаках.

2. Разработан довольно информативный способ оценки перехода металлургических шлаковых расплавов из гомогенного состояния в гетерогенное, включающий определение температурного интервала затвердевания шлакового расплава, энергии активации вязкого течения на различных этапах, количества выделяющейся твердой фазы в процессе кристаллизации, максимальной линейной скорости кристаллизации и соответствующей температуры.

3. Разработаны уравнения для прогнозирования кристаллизационной способности доменных шлаков.

4. Представленные алгоритмы реализованы в виде программы для персонального компьютера.

- 1. Фактографические базы физико-химических данных в рамках банка данных «Металлургия» / А.Ф.Хамхотько, Т.Б.Рудненко, В.Л.Столярова и др. // Изв. АН СССР. Металлы. –1991. –№4. –С.221–223.
- Физико-химические свойства конечных доменных шлаков заводов СССР / Н.Л.Жило, Л.И.Большакова, М.Я.Остроухов и др. // В сб. Шлаковый режим доменных печей. – М.: Металлургия, 1967. –С.149–168.
- Борнацкий И.И. Теория металлургических процессов. // Киев Донецк: «Вища школа», 1978. –228 с.

- 4. Регель А.Р., Глазов В.М. Закономерности формирования структуры электронных расплавов. // М.: Наука, 1982.
- 5. Ладьянов В.И., Логунов С.В., Кузьминых Е.В. О вязкости микронеоднородных жидких металлов // Металлы. –1997. –№4. –С.22–27.
- 6. Фролов Ю.Г. Курс коллоидной химии. // М.: Химия, 1982.
- 7. Чернявский И.Я., Тумашов В.Ф., Владимирова Л.А. О связи вязкости шлаковых расплавов со степенью их кристаллизации //Изв. АН СССР. Металлы. – 1972. –№5. –С.73–75.
- Новохатский И.А., Архаров В.И. Количественная оценка структурной микронеоднородности жидких металлов // ДАН СССР. Физическая химия. –1971. – Т.201. –№4. –С.905–908.
- Скрябин В.Г., Новохатский И.А. Исследование некоторых особенностей вязкого течения окисных расплавов //ЖФХ.–1971.–Т.Х.I.Х. –№11. –С.2759–2762.
- Шелудяков Л.Н. Состав, структура и вязкость гомогенных силикатных и алюмосиликатных расплавов. //Алма–Ата. :Наука, –1980. –155 с.
- 11. Шелудяков Л.Н., Косьянов Э.А., Марконренков Ю.А. Комплексная переработка силикатных отходов. //Алма–Ата.:Наука, 1985. –172 с.
- Приходько Э.В. Моделирование структуры при исследовании связи между составом и свойствами оксидных расплавов // Изв. АН СССР. Неорганические материалы. –1980. –Т.16. –№5. –С.900–906.
- Приходько Э.В., Хамхотько А.Ф., Тогобицкая Д.Н. Строение и физикохимические свойства металлургических шлаковых расплавов // Экспрессинформация. Ин-т «Черметинформация». –М.: –1983. –21 с.
- 14. *Кручинин Ю.Д., Иванова Л.В.* О кристаллизации и вязкости доменных шлаков // Изв. АН СССР. Металлы. –1968. –№2. –С.50–58.
- Кручинин Ю.Д., Иванова Л.В., Румбах В.Э. Кристаллизационные свойства уральских доменных шлаков // Изв. АН СССР. Металлы.–1965.–№6.–С.14–23.

Статья рекомендована к печати докт.техн.наук, проф. Э.В.Приходько