

ТОНКИЕ ПЛЕНКИ И ДРУГИЕ ДВУМЕРНЫЕ ОБЪЕКТЫ

УДК 537

А.Ф. Андреева, А.М. Касумов, В.В. Гавриленко

Институт проблем материаловедения им. И.Н. Францевича НАН Украины г. Киев, ул. Кржижановского, 3, Украина, 03680

СВОЙСТВА НАНОСТРУКТУРЫ Fe₃O₄/Y₂O₃/Fe₃O₄ ПРИ РАБОТЕ НА ПЕРЕМЕННОМ ТОКЕ

Ключевые слова: наноструктуры, магнетит, импеданс, магнитоимпеданс, поляризация спинов электронов Рассмотрена туннельная наноструктура $Fe_3O_4/Y_2O_3/Fe_3O_4$, состоящая из поликристаллических слоев ферромагнетика Fe_3O_4 и аморфной диэлектрической прослойки Y_2O_3 , в процессе работы на переменном токе в условиях воздействия локальных магнитных полей. Определены импеданс и магнитоимпеданс наноструктуры, поляризация спинов электронов в слоях Fe_3O_4 , а также зависимость указанных характеристик от частоты, силы тока и толщины прослойки.

Показано, что частотная зависимость импеданса и магнитоимпеданса наноструктуры, а также поляризация спинов электронов в слоях Fe_3O_4 характеризуются наличием экстремумов, проявляющихся на одной частоте. Данная частота уменьшается с ростом силы тока, возбуждающего магнитное поле в слоях Fe_3O_4 . Возникновение экстремумов вызвано совпадением фаз процесса переполяризации магнитной структуры в слоях ферромагнетика.

Наибольшая величина поляризации спинов, полученная в поликристаллических слоях $Fe_3O_{4^n}$ составляет 65%. Данному значению поляризации соответствует наибольшее полученное значение магнитоимпеданса наноструктуры – 70%.

Установлено, что зависимость импеданса наноструктуры $Fe_3O_4/Y_2O_3/Fe_3O_4$ от толщины прослойки Y_2O_3 имеет вид $Z \sim h^x$ (1 < x < 2), что соответствует туннельному и эмиссионному механизмам переноса заряда, свойственным МДМ-структурам. При толщине прослойки менее 10 нм импеданс резко увеличивается, что, возможно, является следствием взаимного влияния слоев Fe_3O_4 .

Введение

Магнетит Fe₃O₄ известен как материал, перспективный для применения в спинтронике. Являясь полуметаллом, он обладает максимально возможной поляризацией спинов электронов, равной 100%, а также, имея высокую температуру Кюри ($T_{\rm K}$ = 858 K), пригоден для изготовления устройств, работающих при комнатной температуре [1]. Пленки на основе Fe₃O₄ могут быть использованы для создания дат-

© А.Ф. АНДРЕЕВА, А.М. КАСУМОВ, В.В. ГАВРИЛЕНКО, 2010 10

чиков магнитного поля, считывающих головок, элементов магниторезистивной памяти.

Исследования возможности применения магнетита в спинтронике проводятся в основном на эпитаксиальных пленках, поскольку наличие дефектов в слоях с несовершенной структурой приводит к снижению степени поляризации спинов [2]. Однако работа по выращиванию эпитаксиальных пленок Fe_3O_4 на различных подложках – Si [3], Al_2O_3 [4], GaAs [5] связана с технологическими трудностями, вызванными несоответствием параметров кристаллических решеток пленки и подложки. На этом фоне привлекательной кажется возможность использования поликристаллических пленок Fe_3O_4 , которые можно вырастить на любой подложке с помощью простой технологии.

Хотя наши предварительные исследования [6] подтвердили, что наличие межкристаллитных границ в поликристаллических пленках Fe₃O₄ приводит к снижению поляризации спинов, что проявлялось в размытии резкого перехода Вервье и получении очень низкой величины магнитосопротивления (~0,1%), тем не менее существует несколько путей противодействия такому снижению. Один из них состоит в переходе от работы на постоянном токе к работе на переменном, когда длина пробега поляризованного заряда за полупериод ограничена и вероятность рассеяния на межкристаллитных границах уменьшается. В статье [7] отмечается, что переход к работе на переменном токе приводит к увеличению чувствительности сенсоров магнитного поля более чем на два порядка. Другой путь состоит в создании условий для одинаковой ориентации спинов во всех кристаллитах слоя Fe₃O₄ с помощью внешнего магнитного поля, локально действующего только в пределах данного слоя и не влияющего на соседние слои. Такое локальное магнитное поле может быть создано согласно закону Био-Савара-Лапласа [8] с помощью тока, пропускаемого по хорошо проводящему, например медному, электроду контактирующему со слоем Fe₃O₄.

В настоящей работе изучена возможность получения высоких значений поляризации спи-

нов электронов в поликристаллических пленках Fe₃O₄ в условиях применения переменного тока и локальных магнитных полей. Одновременно рассмотрены электрические и гальваномагнитные свойства наноструктуры, содержащей такие пленки, – импеданс, магнитоимпеданс и их зависимость от частоты, силы тока и толщины прослойки, разделяющей данные пленки.

Экспериментальная часть

Определение указанных характеристик проводилось в туннельной наноструктуре, состоящей из двух одинаковых слоев ферромагнетика Fe₃O₄, разделенных тонким диэлектрическим слоем У₂О₃. В такой структуре сопротивление туннельному переходу заряда между слоями ферромагнетика зависит от взаимной ориентации в них векторов поляризации спинов и может регулироваться внешним магнитным полем, влияющим на направление спинов. Количественная связь между величиной поляризации Р спинов электронов в слоях Fe₂O₄, сопротивлением туннельному переходу при параллельной $R_{\uparrow\uparrow}$ и антипараллельной $R_{\uparrow\downarrow}$ ориентации спинов в этих слоях, а также магнитосопротивлением MR данного туннельного устройства устанавливается с помощью формулы Джуллиере [9]:

$$MR = \frac{R_{\uparrow\uparrow} - R_{\uparrow\downarrow}}{R_{\uparrow\downarrow}} = \frac{P^2}{1 - P^2}$$
(1)

Создав с помощью внешних магнитных полей параллельную и антипараллельную поляризации спинов в слоях Fe_3O_4 и определив при этом сопротивление $R_{\uparrow\uparrow}$ и $R_{\uparrow\downarrow}$, по формуле (1) рассчитывают величину *P* и *MR*.

Для перехода к работе на переменном токе можно использовать переменные магнитные поля, устанавливающие направление поляризации спинов в слоях наноструктуры $Fe_3O_4/Y_2O_3/Fe_3O_4$. Ввиду того, что данная структура является конденсатором, при переходе к переменному току измерение постоянного сопротивления заменяют измерением импеданса Z. При использовании параллельной эквивалентной схемы представления конденсатора импеданс имеет вид

Рис. 1. Схема измерения активной и емкостной составляющих импеданса туннельной структуры $Fe_3O_4/Y_2O_3/Fe_3O_4$: 1, 5 – Си-электроды, 2, 4 – слои Fe_3O_4 ; 3 – слой Y_2O_3 ; 6, 7 – синхронизированные источники переменного тока; 8 – мост переменного тока

 $1/Z^2 = 1/R^2 + 1/R_C^2$, где *R* и R_C – соответственно активное и емкостное сопротивления наноструктуры. В формуле (1) в качестве сопротивления переносу заряда $R_{\uparrow\uparrow}$ и $R_{\uparrow\downarrow}$ следует использовать активную составляющую импеданса, описывающую сопротивление такому переносу заряда на переменном токе.

На рис. 1 представлена схема измерения поперечного сопротивления структуры Fe₃O₄/

HAHO CTPYKTYPHOE

Y₂O₃/Fe₃O₄ при работе на переменном токе. Структура (2, 3, 4) заключена между двумя пленочными медными электродами (1, 5), вдоль которых проходит переменный ток, возбуждаемый двумя синхронизированными генераторами (6, 7) либо в одинаковой фазе по отношению друг к другу, либо противофазе. Проходящий в Си-электродах ток, согласно закону Био-Савара-Лапласа, возбуждает в прилегающих к ним слоях Fe₃O₄ поперечное магнитное поле соответственно с антипараллельным либо с параллельным направлениями векторов напряженности относительно друг друга. Мост переменного тока (8) измеряет активную и емкостную составляющие импеданса структуры для параллельной и антипараллельной поляризаций спинов в слоях Fe₃O₄. Измерения проводятся для параллельной эквивалентной схемы конденсатора. Полученные значения $R_{\uparrow\uparrow}$ и $R_{\uparrow\downarrow}$ использовались для расчета P и MR по формуле (1).

Многослойные пленки Cu/Fe₃O₄/Y₂O₃/Fe₃O₄/ Cu наносились на стеклянную подложку методом электронно-лучевого испарения металлов. Для образования оксидных слоев Fe и Y напыляли в присутствии кислорода. Проведенные

Рис. 2. Зависимость активного R(a) и емкостного $R_c(b)$ сопротивления туннельной структуры $Fe_3O_4/Y_2O_3(95 \text{ нм})/Fe_3O_4$ от частоты f возбуждающего тока при параллельной (1) и антипараллельной (2) поляризации спинов в слоях Fe_3O_4 . I = 10 мA

Наноструктурное материаловедение, 2010, № 1

ранее исследования [6] показали, что пленки Fe_3O_4 и Y_2O_3 стехиометрического состава образуются при следующих условиях: парциальное давление кислорода $2 \cdot 10^{-3}$ Па, скорость роста слоев Fe_3O_4 5–50 нм/мин и Y_2O_3 2–70 нм/мин, температура подложки 20–50 °C. При таких условиях роста слои Fe_3O_4 являлись поликристаллическими, а Y_2O_3 – аморфными.

Длина и ширина структуры $Fe_3O_4/Y_2O_3/Fe_3O_4$ равны 1 и 0,1 см соответственно. Толщина слоев Си равна 150 нм, $Fe_3O_4 - 150$ нм, $Y_2O_3 -$ варьировалась в пределах 3–100 нм.

На рис. 2 показана зависимость активной R и емкостной $R_{\rm C}$ составляющих импеданса структуры Fe₃O₄/Y₂O₃/Fe₃O₄ от частоты f возбуждающего тока при параллельной (1) и антипараллельной (2) поляризации спинов в слоях Fe₃O₄. Возбуждающий ток в Cu-электродах имеет величину I = 10 мА. Как видно из данного рисунка, частотная зависимость активной составляющей R имеет острый максимум, а емкостной составляющей $R_{\rm C}$ – минимум, которые проявляются на одной частоте.

Величина активной составляющей R при параллельной (1) поляризации спинов в слоях Fe_3O_4 больше, чем при антипараллельной (2).

Это различие проявляется особенно сильно в области максимума R (рис. 2a). Для емкостной составляющей импеданса (рис. 2δ), наоборот, при параллельной (1) конфигурации спинов величина $R_{\rm C}$ меньше, чем при антипараллельной (2).

Из рис. 2 также видно, что во всем диапазоне исследуемых частот $R_{\rm C}$ существенно превышает R. Тогда из формулы для параллельной схемы конденсатора становится ясно, что величина импеданса Z практически полностью определяется его активной составляющей: $Z \approx R$. Данное соотношение сохраняется также для всех рассмотренных величин токов, возбуждающих магнитные поля. Подставляя его в формулу (1), видим, что это приводит к равенству MR = MZ, т. е. данная формула на переменном токе описывает величину магнитоимпеданса наноструктуры.

С ростом величины тока, текущего в Си-электродах, т. е. и величины возбуждаемого в слоях Fe_3O_4 магнитного поля, положение экстремумов *R* и R_C сдвигается в область низких частот (рис. 3). Сдвиг для параллельной и антипараллельной конфигураций поляризации спинов одинаков.

Рис. 3. Зависимость частоты f возникновения максимумов (I) и минимумов (2) соответственно активного и емкостного сопротивления от силы возбуждающего тока I в туннельной структуре Fe₃O₄/Y₂O₃(95 нм)/Fe₃O₄

Рис. 4. Зависимость величины импеданса Z туннельной структуры Fe₃O₄/Y₂O₃/Fe₃O₄ от толщины h прослойки Y₂O₃ при параллельной (I) и антипараллельной (2) поляризации спинов в слоях Fe₃O₄. I = 10 мA₂f = 1 кГц

Рис. 5. Зависимость поляризации спинов P в слоях Fe_3O_4 структуры $Fe_3O_4/Y_2O_3(95 \text{ нм})/Fe_3O_4$ от частоты f возбуждающего тока: I = 5(1), 10(2) и 20 мА (3)

На рис. 4 представлена зависимость импеданса структуры $Fe_3O_4/Y_2O_3/Fe_3O_4$ от толщины диэлектрической прослойки Y_2O_3 при частоте 1 кГц, отдаленной от частот, где проявляются экстремумы *R* и R_C . Из этого рисунка видно, что с уменьшением толщины прослойки до 10 нм данная зависимость приблизительно описывается как $Z \sim h^x$ (1 < x < 2), а при меньших толщинах Y_2O_3 импеданс структуры резко возрастает.

Частотная зависимость поляризации спинов P(f) в слоях Fe₃O₄, так же, как и зависимость Z(f), характеризуется наличием максимумов (рис. 5). При одинаковых токах возбуждения частоты возникновения максимумов Z и P совпадают. Наибольшая величина P = 65% получена при возбуждающем токе 10 мА и частоте 4 кГц (рис. 5, кривая 2), что меньше теоретически возможной в Fe₃O₄ величины P = 100%.

Частотная зависимость магнитоимпеданса MZ(f) структуры Fe₃O₄/Y₂O₃/Fe₃O₄ также име-

ет максимумы, совпадающие по частоте с максимумами Z(f) и P(f). Наибольшая величина магнитоимпеданса MZ = 70% соответствует наибольшей поляризации спинов.

Обсуждение результатов

Как было показано выше, для каждого значения возбуждающего тока максимумы Z(f), MZ(f) и P(f) проявляются на одной частоте. Возникновение таких максимумов может быть связано с инерционностью процесса переполяризации магнитной структуры в слоях Fe₃O₄, разделенных прослойкой Y₂O₃. Только при определенных частотах наблюдаются совпадение фаз переполяризации в данных слоях и возникновение максимальной поляризации *P* спинов, приводящей к появлению максимумов *Z* и *MZ*.

С ростом силы возбуждающего тока и напряженности магнитного поля в слоях Fe₃O₄ переполяризация магнитной структуры затрудняется, ее скорость снижается и максимум P проявляется при более низких частотах, что приводит к низкочастотному сдвигу Z и MZ.

Максимальная величина поляризации спинов, полученная в слоях Fe_3O_4 структуры $Fe_3O_4/Y_2O_3/Fe_3O_4$ при работе на переменном токе, составляет 65%. В то же время в данной структуре при работе на постоянном токе была получена величина 91%. Снижение поляризации в переменных полях, по-видимому, также связано с инерционностью процесса переполяризации магнитной структуры. Данный вывод подтверждается снижением уровня P с ростом частоты возбуждающего тока (рис. 5). Возможность получения высоких значений поляризации (P=84%) на контактах Fe_3O_4 была подтверждена и в работе [5].

Наибольшая величина магнитоимпеданса, полученная в структуре $Fe_3O_4/Y_2O_3/Fe_3O_4$, составляет MZ = 70%. Данное значение намного больше, чем магнитосопротивление в 3%, наблюдаемое для структуры $Fe_3O_4/Al_2O_3/Co$ [4], но меньше, чем значение 500%, о котором сообщалось относительно наноконтактов Fe_3O_4 [1].

Зависимость импеданса структуры $Fe_3O_4/Y_2O_3/Fe_3O_4$ от толщины прослойки, имеющая вид $Z \sim h^x$ (1 < x < 2), отражает основные механизмы переноса заряда, существующие в МДМ-структурах (металл-диэлектрик-металл): полевую ($R \sim h$) и туннельную ($R \sim h^2$) эмиссии [10]. Наблюдаемое при очень малых толщинах прослойки (<10 нм) резкое увеличение Z, очевидно, вызвано взаимным влиянием слоев Fe_3O_4 .

Выводы

1. Максимальная величина поляризации спинов электронов, полученная в поликристаллических слоях Fe_3O_4 туннельной наноструктуры $Fe_3O_4/Y_2O_3/Fe_3O_4$ на переменном токе, составляет 65%, достигаемое при этом максимальное значение магнитоимпеданса равно 70%.

2. Частотная зависимость импеданса и магнитоимпеданса наноструктуры $Fe_3O_4/Y_2O_3/Fe_3O_4$, а также поляризации спинов электронов в ее слоях Fe_3O_4 характеризуются наличием экстремумов, проявляющихся на одной частоте. Данная частота уменьшается с ростом силы тока, возбуждающего магнитное поле в слоях Fe₃O₄. Возникновение экстремумов вызвано совпадением фаз процесса переполяризации магнитной структуры в слоях ферромагнетика.

3. В наноструктуре $Fe_3O_4/Y_2O_3/Fe_3O_4$, работающей на переменном токе, при толщине прослойки Y_2O_3 более 10 нм преобладают туннельный и эмиссионный механизмы переноса заряда, свойственные МДМ-структурам. При толщине Y_2O_3 менее 10 нм на перенос заряда начинает оказывать воздействие взаимное влияние слоев Fe_3O_4 , что приводит к резкому увеличению импеданса наноструктуры.

Розглянуто тунельну наноструктуру $Fe_3O_4/Y_2O_3/Fe_3O_4$, яка складається з полікристалічних шарів феромагнетика Fe_3O_4 та аморфного діелектричного прошарку Y_2O_3 , у процесі роботи на змінному струмі за умов впливу локальних магнітних полів. Визначено імпеданс та магнітоімпеданс наноструктури, поляризацію спінів електронів у шарах Fe_3O_4 , а також залежність зазначених характеристик від частоти, сили струму й товщини прошарку.

Показано, що частотна залежність імпедансу та магнітоімпедансу наноструктури, а також поляризація спінів електронів у шарах Fe₃O₄ характеризується наявністю екстремумів, що проявляються на одній частоті. Ця частота зменшується зі зростанням сили струму, який збуджує магнітне поле у шарах Fe₃O₄. Виникнення екстремумів викликано збігом фаз процесу переполяризації магнітної структури у шарах феромагнетика.

Найбільша величина поляризації спінів, отримана у полікристалічних шарах Fe₃O₄, становить 65%. Цьому значенню поляризації відповідає найбільше отримане значення магнітоімпедансу наноструктури – 70%.

Встановлено, що залежність імпедансу наноструктури $Fe_3O_4/Y_2O_3/Fe_3O_4$ від товщини прошарку Y_2O_3 має вигляд $Z \sim h^x$ (1 < x < 2), що відповідає тунельному та емісійному механізмам перенесення заряду, які властиві МДМ-структурам. За товщини прошарку менше від 10 нм імпеданс різко збільшується, що, можливо, є наслідком взаємного впливу шарів Fe_3O_4 .

Ключові слова: наноструктури, магнетит, імпеданс, магнітоімпеданс, поляризація спінів електронів

The tunnel Fe₃O₄/Y₂O₃/Fe₃O₄ nanostructure consisting of Fe₃O₄ ferromagnetic polycrystal layers and an amorphous dielectric Y₂O₃ layer has been studied during the operation under AC and local magnetic field influence. Impedance and magnetoimpedance have been defined for Fe₃O₄/Y₂O₃/Fe₃O₄ nanostructure, as well as polarization of electron spins in Fe₃O₄ layers, and their dependence on frequency, current and layer's thickness.

It has been shown that frequency dependence of impedance and magnetoimpedance of nanostructure and polarization of electron spins in Fe₃O₄ layers have some extrema appearing at the certain frequency. The frequency of their appearance decreases when the current strength generating the magnetic field in Fe₃O₄ layers increases. The extrema's appearance depends on coincidence of magnetic structure repolarization phases in Fe₃O₄ layers.

The highest spin polarization value obtained in polycrystal Fe_3O_4 layers in alternating field is 65%. This value of polarization corresponds to the maximal magnetoimpedance value of 70%.

It has been determined, that the dependence of $Fe_3O_4/Y_2O_3/Fe_3O_4$ structure impedance on Y_2O_3 thickness requires the equation $Z \sim h^x$ ($1 \le x \le 2$) and corresponds to the tunnel and emission charge transport mechanisms, which are characteristic for MDM structures. When the substrate thickness is less than 10 nm the impedance sharply increases. Perhaps it is a consequence of reciprocal influence of Fe_3O_4 layers.

Key words: nanostructures, magnetite, impedance, magnetoimpedance, polarization of electron spins

- Magnetic properties of Fe₃O₄ films grown by epitaxial electrodeposition on the low index planes of gold/I.A. Switzer, T.A. Sorenson, S.A. Morton, G.D. Waddill [Electronic resource]. – Access mode : http://www.als.lbl.gov/als/ compendium/AbstractManager/frontend/pagBeamlines2. php?BeamLineID=32.
- Atomically resolved spin-dependent tunneling on the oxygen-terminated Fe₃O₄ (111) / N. Berdunov, S. Murphy, G. Mariotto, I.V. Shwets // Phys. Rev. Lett. 2004. 93, N 5. 057201.

- Epitaxy of Fe₃O₄ on Si (001) by pulsed laser deposition using a TiN/MgO buffer layer / Reisinger D., Schonecke M., Brenninger T. et al. – arXiv:cond-mat/0.301443v4. – 23 Feb 2003.
- Bataille A.M. Growth and physical properties of Fe₃O₄ (111)-based epitaxial tunnel junctions [Electronic resource]. – Access mode : http://www.drecam.cea.fr/en/Phocea/ Vie des labos/Ast/ast-visu.php.
- Pulsed laser deposition of Fe₃O₄ on III-V semiconductors for spin injection / E.J. Preisler, J. Brooke, N.C. Oldham, T.C. McGill // J. Vac. Sci. Technol. – 2003. – 21, N 4. – P. 1745–1748.
- Андреева А.Ф., Касумов А.М., Двойненко О.К. Свойства поликристаллических пленок магнетита Fe₃O₄ // Соврем. проблемы физ. материаловедения: Сб. научн. трудов ИПМ НАНУ, сер. «Физ.-хим. технологии порошковых материалов». – К., 2008. – Вып. 17. – С. 163–165.
- Phan M.-H., Peng H.-X. Giant magnetoimpedance materials: Fundamentals and applications // Progress in Materials Science. – 2008. – 53. – P. 323–420.
- Левич В.Г. Курс теоретической физики // М.: Наука, 1969. – Т. 1. – 910 с.
- Teresa J.M. de. Magnetoresistance phenomena in magnetic materials and devices // European School on Magnetism: New Experimental approaches in Magnetism. – Constanta, Romania, 2005 [Electronic resource]. – Access mode : http://esm.neel.cnrs.fr/2005-constanta/abs/deteresaabs.pdf.
- Епифанов Г.И. Физические основы микроэлектроники // М.: Советское радио, 1971. – 375 с.