В.И.Елисеев, А.П.Толстопят, Л.А.Флеер, Т.А.Рузова, А.Ф.Шевченко, И.А.Маначин, С.А.Шевченко

РАСЧЕТ ДВИЖЕНИЯ ЧАСТИЦ В ПРЯМОЛИНЕЙНОМ КАНАЛЕ ФУРМЫ

Представлена расчетная модель движения газо— магниевого потока в цилиндрическом канале фурмы с учетом взаимодействия его со стенкой канала. Показано, что согласно представленной модели величина влияния стенки на скорость движения потока, в условиях аналогичных реальным, достигает 20 %.

Инжекция, канал фурмы, частица магния, двухфазный поток, математическая модель, изменение скорости.

Введение. При проектировании инжекционных и пневмотранспортных систем выбор рациональной компоновки, параметров работы и другое удобно использовать расчетные модели, описывающие движение многофазных сред в каналах. Так, например, данная работа направлена на совершенствование расчетной модели движения двухфазного потока (гранулы магния + транспортирующий газ) в цилиндрическом канале фурмы применительно к процессу инжекционного рафинирования расплава чугуна в ковшах диспергированным магнием [1]. Особенностью рассматриваемого потока является движение достаточно крупных частиц ($d_{ch} \approx 1,5$ мм) близких к сферической форме в узком канале диаметром 7–12 мм.

Исследования движения многофазных потоков получили широкое распространение в различных отраслях промышленности. При разработке теоретических основ модели движения гетерогенных сред важным направлением было описание взаимодействия внутри дисперсной среды и с несущим потоком [2]. Другим практическим и не менее важным направлением было получение экспериментальных данных и создание методов расчета взаимодействия несущих потоков и дисперсной составляющей со стенками того или иного технологического аппарата. Пневмотранспортные системы являются дольно протяженными и разветвленными системами, в которых основной вклад в сопротивление и, соответственно, в потери энергии, вносит взаимодействие гетерогенных потоков со стенками каналов. В связи с этим при рассмотрении гидро- и пневмотранспортных систем основным вопросом является определение потерь давления или величин сопротивления движению сред в каналах. Этой проблеме и сопутствующей ей другим вопросам посвящено значительное количество работ, например, [3,4]. Учитывая сложность движения переносимых потоком частиц и практическую непредсказуемость физических свойств (формы частиц, морфология поверхности, адсорбционные свойства), основным направлением исследования является эксперимент, который позволяет определять необходимые параметры. Согласно принципу наложения Гастерштадта [4] суммарные потери давления могут быть представлены как сумма

$$\Delta p = \Delta p_w + \Delta p_r + \Delta p_t + \Delta p_p \quad , \tag{1}$$

где Δp_w – потери давления на перемещение воздушного потока; Δp_r – потери давления на разгон транспортируемого материала; Δp_{tr} – потери давления на восстановление скорости частиц материала после взаимодействия их со стенками материалопровода и между собой; Δp_p – потери давления на подъем частиц транспортируемого материала. Большой теоретический материал, посвященный соударению частиц о стенку, дан в работе [5]. Здесь предлагается несколько иной подход, основанный на введение в уравнение движения силы Бусройда, которая для горизонтального канала записывается как

$$F_B = Bg\alpha_{ch}\rho_{ch}\frac{u_{ch}}{u}, \qquad (2)$$

где α_{ch} – объемная доля частиц; ρ_{ch} – плотность твердого материала; u, u_{ch} – скорость газа и частиц соответственно; g – ускорение свободно падающего тела; B – коэффициент Бусройда. Авторами данной работы в результате теоретического рассмотрения различных вариантов взаимодействия частицы со стенкой удалось замкнуть задачу и показать, что коэффициент Бусройда в горизонтальных каналах может быть определен в виде

$$B = 2,325 \frac{f(1+k_n)D}{m(1-k_n)r_{ch}} , \qquad (3)$$

где f – коэффициент трения скольжения; k_n – коэффициент восстановления при ударе; m – отношение массовых расходов частиц и газа; D – диаметр трубы; r_{ch} – радиус частицы. Такой подход позволяет с помощью уравнений движения определить скорость частиц в канале и на выходе из него, что важно для понимания общего процесса.

Математическая модель движения частиц в канале с учетом их взаимодействия со стенкой. Выпишем уравнения одномерного движения газа и дисперсного материала в следующей форме, которую можно получить из уравнений [2] с учетом силы Бусройда:

$$\alpha \rho u = G \,, \tag{4}$$

$$\alpha_{ch}\rho_{ch}u_{ch} = G_2, \qquad (6)$$

$$\alpha_{ch}\rho_{ch}u_{ch}\frac{du_{ch}}{dx} = \alpha_{ch}\left(\frac{d\delta}{dx} - f_T\right) + \alpha n f_{g-ch} + \alpha_{ch}(\rho_{ch} - \rho)g - F_B$$
(7)

где α , α_{ch} – объемные доли соответственно газа и дисперсной фазы; $f_T = \frac{1}{2} \lambda \rho u^2$ – сила трения газового потока о стенки канала; $f_{g-ch} = f_m + f_\mu$, $f_m = \frac{1}{2} \frac{4}{3} \pi r_{ch}^3 \rho \left(u \frac{du}{dx} - u_{ch} \frac{du_{ch}}{dx} \right)$ – сила действия присоединенной массы; $f_\mu = \frac{1}{2} \rho c_\mu |u_{ch} - u| (u_{ch} - u)$ – сила газового потока, действующая на частицу.

Исключая из этих уравнений величину $\left(\frac{d\delta}{dx} - f_T\right)$, получим:

$$\left(\rho_{ch} + \frac{1}{2}\rho\right)u_{ch}\frac{du_{ch}}{dx} = \frac{3}{2}\rho u\frac{du}{dx} + \frac{n}{\alpha_{ch}}f_{\mu} + gCos\theta \cdot (\rho_{ch} - 2\rho) - \alpha_{ch\,ch}^{-1}F_{B} \cdot$$
(8)

Рассмотрим теперь величину F_B , выписанную в (2). Ускорение свободно падающего тела g в этой формуле указывает на то, что сама сила Бусройда возникает из–за действия силы тяжести на частицу, которая приводит ее к падению на стенку канала. Подкорректируем формулу для нашего случая. Будем считать, что эту силу можно представить в виде двух слагаемых

$$F_B = F_B^G + F_B^W, (9)$$

где F_B^w – сила, связанная с взаимодействием со стенкой за счет турбулентных пульсаций газового потока; F_B^G – сила Бусройда, связанная, помимо турбулентности, с силой тяжести частиц, которая является причиной интенсивного взаимодействия частицы со стенкой. Для горизонтального потока частиц сила F_B^G должна быть выражена также как и указанная выше сила (2). Примем, что для наклонных труб с углом отклонения оси трубы от вертикали θ взаимодействие определяется также углом между силой тяжести и нормалью к поверхности внутренней стенки канала, поэтому в более общем случае

$$F_B^G = B_G g \cdot Sin\theta \cdot \alpha_{ch} \rho_{ch} \frac{u_{ch}}{u} , \qquad (10)$$

где B_G – постоянная, зависящая от свойств поверхности канала и самой частицы. Ее можно записать в несколько измененном виде, чем это записано в (3), чтобы сохранить физическую сущность, как для разреженного потока, так и для сравнительно концентрированного:

$$B_G = Z_G \frac{1 - \exp(-m)}{m} \frac{f(1 + k_n)D_{tr}}{(1 - k_n)R_{ch}}$$
(11)

При малых *m*, этот коэффициент будет иметь конечную величину, а для больших перейдет к виду (3), Z_G – постоянная, определяемая из эксперимента. Величина F_R^W , как было условлено, зависит от пульсаций га-

зового потока, вследствие чего не должна зависеть от направления по отношению к вертикали, т.е. не должна содержать величины g (это видно и по формулам (2), (3)). Поэтому необходимо произвести обратную операцию, которая была сделана в [4], т.е. умножить эту величину на число Фруда $Fr = \frac{u^2}{gD_r}$, тогда эту часть силы Бусройда запишем в виде:

$$F_B^W = B_W \alpha_{ch} \rho_{ch} \frac{u u_{ch}}{D_{tr}}, \qquad (12)$$

где B_w – представим также как и (11), т.е.

$$B_{W} = Z_{W} \frac{1 - \exp(-m)}{m} \frac{f(1 + k_{n})D_{tr}}{(1 - k_{n})R_{ch}}.$$
(13)

Проведение расчетов проводилось по выписанным уравнениям, при этом величина *m* в эксперименте допускала довольно грубую оценку, поэтому в расчетах она принималась в виде двух значений 0,1 и 1,0. Скорость на выходе из трубы подгонялась под величину скорости, найденную из эксперимента и соответствующую максимальной вероятности. Значения k_n и *f* не определялись, хотя грубая оценка показала, что для магния $k_n \approx 0,1$, а для полистирола $k_n \approx 0,5$. Эти величины были оценены после опытного определения высоты подскока частиц магния и полистирола после удара о металлическую плиту. Разброс этой величины практически никак не оценивался, т.к. это требовало дополнительных многочисленных экспериментов. Учитывая, что коэффициенты B_W и B_G содержат в себе величины, входящие сомножителями, можно считать их одним коэффициентом, который и определялся из основных экспериментов по нахождению скоростей частиц на выходе из трубы. Поэтому величины $fZ_W \frac{1+k_n}{1-k_n}$ и

$$fZ_G \frac{1+k_n}{1-k_n}$$
 рассматривались как коэффициенты, соответственно f_W и f_G .

Выписанные коэффициенты неизвестны, они должны быть найдены из эксперимента, но для их нахождения необходимо определиться с той величиной, к которой должны привязываться расчетные параметры для этих коэффициентов. Как правило, такой величиной является некоторое значение в данном случае значение скорости, которое соответствует максимальной вероятности. Используя экспериментальный материал, полученный на лабораторном стенде, были определены вероятные скорости для частиц магния и полистирола в выходном сечении канала для узкого интервала диаметров, которые представленные в табл.1.

Здесь приведены следующие значения: $u_{p=\max}$ – экспериментальная величина скорости частицы, соответствующая максимальному значению вероятности; u_{anp} – значение скорости, взятое по аппроксимационным

кривым при получении средних значений; u_{max} – максимальное значение скорости частицы полученное в эксперименте; u_{ce} – скорость частицы в конце канала, рассчитанная без учета взаимодействия ее со стенкой; u_{pacy} – скорость на выходе, определяемая по выписанным выше уравнениям, при этом коэффициенты f_W и f_G имеют следующие значения: для магниевых частиц f_W = 3,077 10⁻⁵, f_G = 1,5; для частиц полистирола f_W = 1,538 $\cdot 10^{-4}$, f_G = 1,0.

eren Asimerini isepasie mering e puee intuinisian ne medeni												
Угол		м/с	D = 1,0 мм					D = 1,5 мм				
	Материал		u _{p=max}	u _{anp}	u _{max}	u _{cb}	и _{расч} , m= 0,1/1,0	u _{p=max}	u _{anp}	u _{max}	u _{св}	и _{расч} , m= 0,1/1,0
$\alpha = 0^{\circ}$	Магний	P = 0,150 MIIa Q = 20,8 $M^{3}/4ac$	19,0	18,0	23,7	25,7	23,2 24,0	19,5	19,00	22,5	22,8	21,1 21,6
		Р = 0,265 МПа Q =30 м ³ /час	24,0	23,5	36,0	36,5	32,9 34,1	_	26,00	35,0	32,3	29,8 30,6
	Полистирол	P = 0,150 MIIa Q = 20,8 $M^{3}/4ac$	19,9	20,6	21,5	29,3	20,0 22,5	21,0	20,1	26,6	26,4	19,3 21,4
		Р = 0,265 МПа Q =30 м ³ /час	_	26,0	26,5	41,8	28,5 32,1	30,8	28,5	34,5	37,6	27,5 30,4
$\alpha = 45^{\circ}$	Магний	P = 0,150 MIIa Q = 20,8 $M^{3}/4ac$	18,8	16,0	25,5	25,7	18,2 20,3	17,5	17,00	23,8	22,8	17,2 18,9
		Р = 0,265 МПа Q =30 м ³ /час	26	23,8	34,8	36,5	29,3 31,4	27,0	26,50	38,0	32,3	27,1 28,7
	Полисирол	P = 0.150 MIIa Q = 20.8 $M^{3}/4ac$	-	18,0	21,0	29,3	18,0 20,8	18,0	18,0	23,5	26,4	17,5 19,9
		P = 0,265 M Πa $Q = 30 \text{ m}^3/\text{yac}$	26,0	27,0	29,5	41, 8	27,0 30,9	24,5	27,2	34,0	37,6	26,2 29,4

Таблица 1. Сравнение экспериментальных лабораторных данных скоростей движения твердых частиц с рассчитанными по модели

Анализ результатов. Из анализа данных таблицы можно сделать следующие выводы. Стенки канала оказывают значительное влияние, причем даже для вертикальных труб взаимодействие частиц со стенкой приводит к заметным изменениям выходных скоростей по сравнению со свободным движением частиц в канале (без взаимодействия). Это видно при сравнении максимальных величин скоростей u_{\max} или расчетных скоростей без взаимодействия со стенкой канала u_{ce} с определяемыми скоростями при максимальной вероятности, т.е. $u_{n=max}$. Между скоростями u_{max} и u_{ce} также наблюдается в некоторых случаях существенное отличие, что также указывает на сильное влияние стенки канала. Угол наклона трубы оказывает влияние менее существенное. Обращает также на себя внимание тот факт, что и полистирола слабо отличаются друг от друга. К сожалению, необходимо указать, что некоторое несоответствие, которое проглядывается в таблице, например, что $u_{max} > u_{cs}$ или для магния $u_{p=max}$ для наклонной трубы больше, чем для вертикальной говорит, во-первых, о погрешностях самого эксперимента и, во-вторых, о недостаточном количестве экспериментов. В целом, видно, что при определении скоростей частиц в фурмах необходимо учитывать взаимодействие частиц со стенками канала. Что касается методики расчета, то она, по крайней мере, с соответствующей эксперименту точностью, дает возможность определять значения скоростей в каналах при движении газа и частиц. При дальнейшей работе она может быть уточнена. Покажем теперь графики изменения скоростей газа и частиц в каналах. На рис.1. приведены две кривые, характеризующие изменение скорости газа в канале для различных объемных расходов. Из рисунка видно, что скорости по мере движения газа по каналу увеличиваются. На следующих рисунках (рис.2-5) показаны кривые изменения скоростей частиц для магния (рис.2,3) и полистирола (рис.4,5).

Рис. 1 Изменение скорости газа в канале. 1 – $\boldsymbol{Q} = 20,8 \text{ м}^3/\text{час}; 2 - \boldsymbol{Q} = 30,0 \text{ м}^3/\text{ч}.$

Рис.2 Изменение скорости частицы магния с диаметром 1 мм вдоль канала при **Q** = 20,8 м³/час (____) и при **Q** = 30,0 м³/час (___). 1 – без взаимодействия со стенкой, 2 – m = 0,1, 3 – m = 1,0.

Рис.3 Изменение скорости частицы магния с диаметром 1,5 мм вдоль канала при **Q** = 20,8 м³/час (_____) и при **Q** = 30,0 м³/час (____). 1 – без взаимодействия со стенкой, 2 – *m* = 0,1, 3 – *m* = 1,0.

Рис.4 Изменение скорости частицы полистирола с диаметром 1,0 мм вдоль канала при $Q = 20,8 \text{ м}^3/\text{час}(---)$ и при $Q = 30,0 \text{ м}^3/\text{час}(---)$. 1 – без взаимодействия со стенкой, 2 – m = 0,1, 3 - m = 1,0.

Рис.5 Изменение скорости частицы полистирола с диаметром 1,5 мм вдоль канала при $Q = 20,8 \text{ м}^3/\text{час}(---)$ и при $Q = 30,0 \text{ м}^3/\text{час}(---)$. 1 – без взаимодействия со стенкой, 2 – m = 0,1, 3 – m = 1,0

В заключение, используя найденные значения коэффициентов f_w и f_G , приведем кривые изменения скоростей газа и частиц магния в канале фурмы длиной 9 м (рис. 6).

Рис.6. Изменение скорости газа и частиц магния вдоль фурмы при $Q = 30,0 \text{ м}^3$ /час для $d_{ch} = 1 \text{ мм.}$

1 – скорость газа; 2 – скорость частиц без взаимодействия со стенкой; 3 – скорость частиц при m = 0,1; 4 – скорость частиц при m = 1,0.

Из рисунка следует, что учет взаимодействия частицы со стенкой фурмы в рамках данной модели приводит к уменьшению выходной скорости примерно на 7–10 м/с (до 20 %).

- Оценка скорости истечения магнийсодержащей струи при варьировании условий и параметров инжектирования. / С.А.Шевченко, В.И.Елисеев, А.Ф.Шевченко, [и др.]. // Фундаментальные и прикладные проблемы черной металлургии, Сб. ИЧМ. – 2006. – № 12 – С.118–122.
- Нигматулин Р.И. Динамика многофазных сред [Том.1] / Р.И.Нигматулин. М.: Наука,1987. – 464с.

- 3. Соу С. Гидродинамика многофазных систем / С.Соу. М.: Мир, 1971. 320с.
- 4. *Зуев Ф.Г.* Пневматическое транспортирование на зерноперерабатывающих предприятиях / Ф.Г.Зуев М.: Колос, 1976. 344с.
- Волошин А.И. Механика пневмотранспортирования сыпучих материалов / А.И.Волошин, Б.В.Пономарев. – К.: Наукова думка, 2001. – 520с.

Статья рекомендована к печати докт.техн.наук А.С.Вергуном

В.І.Єліссєв, О.П.Товстоп'ят, Л.О.Флеср, Т.О.Рузова, А.П.Шевченко, І.О.Маначин, С.А.Шевченко Розполити подативно в прима тілійного мого ті фи

Розрахунок руху частинок в прямолінійному каналі фурми

Представлено розрахункову модель руху газо- магнієвого потоку в циліндричному каналі фурми з урахуванням його взаємодії із стінкою каналу. Згідно представленої моделі показано, що величина впливу стінки на швидкість руху потоку, в умовах аналогічних реальним, сягає 20%.