# УДК 532.529, 536.426, 664

# БАСОК Б.И., ГРАБОВА Т.Л.

Институт технической теплофизики НАН Украины

# ОЦЕНКА ЭФФЕКТОВ ДИСПЕРГИРОВАНИЯ ВКЛЮЧЕНИЙ В РОТОРНО-ПУЛЬСАЦИОННОМ АППАРАТЕ ДИСКОВО-ЦИЛИНДРИЧЕСКОГО ТИПА

Розглянуто механізми подрібнення дисперсних включень у рідкому середовищі й виконано оцінні розрахунки розмірів включень при диспергуванні в роторно-пульсаційному апараті дисково-циліндричного типу. Отримано узгодження розрахункових значень з експериментальними даними. Рассмотрены механизмы дробления дисперсных включений в жидкой среде и выполнены оценочные расчеты размеров включений при диспергировании в роторно-пульсационном аппарате дисково-цилиндрического типа. Получено согласование расчетных значений с экспериментальными данными. The mechanisms of crushing of the dispersed particles are considered in a fluid medium. The evaluation calculations of sizes of particles are performed to disperse in rotor-pulse apparatus of diskcylindrical type. The results of calculation and experimental data are in agreement.

- а ускорение;
- *b* линейное ускорение;
- Во число Бонда;
- C скорость звука;
- *d* диаметр частицы;
- *g* ускорение свободного падения;
- P давление;
- *t* текущее время;
- u -скорость;
- We число Вебера;
- *х*, *у* декартовые координаты;
- ε скорость диссипации энергии турбулентности;
- $\rho$  плотность;
- $\sigma$  поверхностное натяжение;

Одним из перспективных направлений реализации энергосбережения является разработка высокоэффективных аппаратов с многофакторным воздействием на обрабатываемую среду за счет дискретного ввода в локальную рабочую зону массы и энергии большой плотности. К таким аппаратам относятся РПА дисково-цилиндрического типа, одна из модификаций которого представлена на рис. 1.

Моделирование процессов гидродинамического дробления дисперсных включений в жидкостной системе в РПА затруднительно, т.к. на процесс дробления влияет комплекс факторов воздействия [1-4]:

- v кинематический коэффициент вязкости;
- τ касательное напряжение;
- ф угол поворота;
- ω угловая скорость вращения.

#### Индексы:

- с параметр дисперсионной среды;
- ф параметр дисперсной фазы;
- *ц* центробежный;
- тах максимальное значение параметра;
- min минимальное значение параметра;
- \* критическое значение величины.

#### Сокращения:

- ДИВЭ дискретно-импульсный ввод энергии;
- РПА роторно-пульсационный аппарат.

- механическое воздействие на дисперсные частицы гетерогенной среды, заключающееся в ударных, срезывающих и истирающих нагрузках при контактах с рабочими органами РПА;

- гидродинамическое воздействие, выражающееся в больших сдвиговых напряжениях, возникающих в гетерогенной среде, развитой турбулентности, в пульсациях давления и скорости в среде;

- гидроакустиское воздействие на среду, которое осуществляется за счет мелкомасштабных пульсаций давления, кавитации, ударных волн и других акустических эффектов.



Рис. 1. Конструкция роторно-пульсационного аппарата дисково-цилиндрического типа: 1 — крышка; 2 — статор дискового узла; 3 — ротор дискового узла; 4 — каналы дискового узла; 5 — внутренний статор цилиндрического узла; 6 — ротор цилиндрического узла; 7 — внешний статор цилиндрического узла; 8 — щели цилиндрического узла; 9 — корпус.

Механизмы разрушения дисперсных частиц мало исследованы, поэтому рассматриваются различные модели, позволяющие осуществить лишь оценку эффектов диспергирования. Однако даже такие качественные результаты зачастую являются информативными и полезными для реализации технологических процессов, т.к. указывают правильное направление проведения процесса с точки зрения энерго- и ресурсосбережения.

В работе проведено обобщение возможных механизмов диспергирования частиц в жидкости в РПА на основании имеющихся данных гидродинамических и теплофизических возмущений параметров потока, рассмотренных в работе [5], и оценка их влияния на конечный размер частиц. Результаты расчетов гидродинамических параметров потока жидкости в РПА, полученные с помощью компьютерного моделирования, приведены для характерных зон рассматриваемого РПА типа АР-3000 [6, 7] в табл.1, 2 и на рис. 2, 3.

Рассмотрим модельную двухфазную гетерогенную среду, например, с межфазным натяжением  $\sigma = 20$  мH/м, где несущая фаза (дисперсионная среда) — вазелин, а другая фаза включения частиц дисперсной фазы сферической формы. Принимаем: твердость частиц меньше твердости материала внутренней поверхности РПА, допускаются пластические и упругие деформации, размер частиц меньше диаметра (ширины) каналов (прорезей) роторов и статоров, наименьший исходный размер частиц больше величины междискового и межцилиндрических зазоров между статорами и роторами. Частица, испытывающая пульсации давления, скорости и ускорения, движется пока не окажется зажатой между противоположными кромками статора и ротора, при последующем вращении роторов частица разрушается.

Рассмотрим следующие механизмы дробления включений дисперсной фазы в жидкой несущей фазе.

**1. Неустойчивость Кельвина-Гельмгольца** [8, 9], возникающая в результате образования поверхностных волн при продольном движении двух взаимонерастворимых фаз относительно межфазной поверхности.

При данном виде неустойчивости характерный размер включений (диаметр d) может быть оценен как [8]:

$$d = \frac{\sigma W e^*}{\rho_{\phi} u^2} , \qquad (1)$$

где  $\rho_{\phi} = 1200 \text{ кг/м}^3$ , We\* = 10 [8], *u* – локальные значения скорости потока дисперсионной среды. За характерную скорость можно принять максимальную скорость *u*<sub>max</sub> в рассматриваемых областях потока (табл. 1, 2). Для рассматриваемой системы такая оценка дает значения *d*<sub>min</sub> = 1...7 мкм для области дискового узла (поз. 2-4, рис. 1) и 3...7 мкм для области цилиндрического узла (поз. 5-8, рис. 1). Причем наиболее эффективными зонами дробления дисперсных включений являются: область входа в канал ротора дискового узла и зоны входа и выхода прорезей ротора цилиндрического узла.

Оценивая размер дисперсных включений согласно [9] с учетом плотностей несущей среды и дисперсной фазы и относительной скорости их движения по формуле:

$$d = \frac{\sigma We^* \left( \rho_{\phi} + \rho_c \right)}{\rho_{\phi} \rho_c \Delta u^2} , \qquad (2)$$

Табл. 1.

| Область<br>потока<br>дискового<br>узла | Время, $10^4$ с | u <sub>max,</sub> M/C | d <sub>min</sub> , MKM | ∆ <b>u</b>   <sub>max</sub> , M/c | $d_{min}$ , MKM | $ P _{max}, 10^5 \Pi a$ | $d_{min},$ MKM | $\left  \Delta P \right _{max}, 10^5  \Pi a$ | d <sub>min</sub> , MKM | $ \Delta a _{max}, 10^3 \mathrm{M/c}$ | $d_{min}$ , MKM | $b, 10^3 \mathrm{M/c^2}$ | d <sub>min</sub> , MM | $\varepsilon_{max}, 10^5  \mathrm{M}^2/\mathrm{c}^3$ | d <sub>min</sub> , MKM | <i>и</i> <sub>0</sub> , м/с | $d_{mins}$ MKM | τ, Па | <i>d<sub>min</sub>,</i> MKM |
|----------------------------------------|-----------------|-----------------------|------------------------|-----------------------------------|-----------------|-------------------------|----------------|----------------------------------------------|------------------------|---------------------------------------|-----------------|--------------------------|-----------------------|------------------------------------------------------|------------------------|-----------------------------|----------------|-------|-----------------------------|
| статора на<br>выходе из<br>канала      | 0               | 5,0                   | 6,7                    | 3,4                               | 33,4            | 1,7                     | 1,2            | 0,2                                          | 23,5                   |                                       |                 |                          |                       | 1,2                                                  | 37,8                   | 0,2                         | 69,8           | 98,2  | 331,6                       |
| ротора на входе в канал                |                 | 7,2                   | 3,2                    | 3,6                               | 30,7            | 1,7                     | 1,2            | 0,8                                          | 5,1                    |                                       |                 |                          |                       | 8,3                                                  | 17,3                   | 0,2                         | 67,6           | 102,5 | 162,3                       |
| статора на<br>выходе из<br>канала      | 2,22            | 15,6                  | 0,7                    | 13,1                              | 2,3             | 2,9                     | 0,7            | 1,2                                          | 3,4                    | 57,4                                  | 3,4             | 3,7                      | 0,4                   |                                                      |                        | 0,4                         | 25,4           | 378,1 | 169,0                       |
| ротора на входе в канал                |                 | 19,1                  | 0,5                    | 13,3                              | 2,2             | 1,6                     | 1,3            | 1,3                                          | 3,1                    | 29,6                                  | 4,8             | 3,4                      | 0,4                   |                                                      |                        | 0,4                         | 25,2           | 382,5 | 84,0                        |
| статора на<br>выходе из<br>канала      | 3,89            | 8,7                   | 2,2                    | 6,1                               | 10,4            | 2,8                     | 0,7            | 0,9                                          | 4,4                    | 35,0                                  | 4,4             | 6,4                      | 0,3                   |                                                      |                        | 0,3                         | 45,0           | 176,3 | 247,5                       |
| ротора на<br>входе в канал             |                 | 11,2                  | 1,3                    | 6,3                               | 9,8             | 2,4                     | 0,8            | 1,2                                          | 3,5                    | 41,5                                  | 4,0             | 7,8                      | 0,3                   |                                                      |                        | 0,3                         | 44,1           | 181,4 | 122,0                       |
| статора на<br>выходе из<br>канала      | 6,67            | 9,3                   | 1,9                    | 6,6                               | 8,9             | 2,5                     | 0,8            | 0,9                                          | 4,6                    | 28,6                                  | 4,8             | 2,4                      | 0,5                   |                                                      |                        | 0,3                         | 42,4           | 190,9 | 237,8                       |
| ротора на входе в канал                |                 | 8,1                   | 2,6                    | 6,4                               | 9,6             | 2,2                     | 0,9            | 0,9                                          | 4,4                    | 27,5                                  | 4,9             | 2,9                      | 0,5                   |                                                      |                        | 0,3                         | 43,7           | 183,5 | 121,3                       |
| статора на<br>выходе из<br>канала      | 8,33            | 10,8                  | 1,4                    | 10,6                              | 3,5             | 3,8                     | 0,5            | 2,1                                          | 1,9                    | 13,1                                  | 7,1             | 2,4                      | 0,5                   |                                                      |                        | 0,4                         | 29,9           | 303,8 | 188,5                       |
| ротора на<br>входе в канал             |                 | 15,8                  | 0,7                    | 11,6                              | 2,9             | 1,9                     | 1,0            | 1,0                                          | 3,9                    | 18,6                                  | 6,0             | 1,6                      | 0,7                   |                                                      |                        | 0,4                         | 27,9           | 333,2 | 90,0                        |

где  $\Delta u$  — скорость тангенциального движения фаз относительно границы их раздела (табл. 1, 2),  $\rho_c = 900 \text{ кг/м}^3$  — плотность несущей фазы (вазелина), получим значения  $d_{\min} = 2...30$  мкм для области дискового узла и от 6 мкм до 20 мкм для области цилиндрического узла.

Оценку размера включений дисперсной фазы при реализации эффектов гидродинамического дробления в РПА [10] можно провести на основе числа Вебера в другом представлении:

$$d = \frac{\sigma W e^*}{|P|} , \qquad (3)$$

где P – давление в рассматриваемой области потока (табл. 1, 2, рис. 2, 3). По результатам оценочных расчетов в рассматриваемых областях потока  $d_{\min} = 1...10$  мкм.

Оценивая размер дисперсных включений по [10],

$$d = \frac{2\sigma W e^*}{|\Delta P|} , \qquad (4)$$

где  $\Delta P$  — перепад давлений, действующих на противоположные части включения дисперсной фазы (табл. 1, 2). Из (4) получили значения  $d_{\min} = 2...24$  мкм для области дискового узла и 10...40 мкм для области цилиндрического узла.

2. Неустойчивость Релея-Тейлора, возникающая в результате роста малых отклонений давления, плотности и скорости в жидкой среде с неоднородным распределением плотности, находящейся в гравитационном поле или двигающемся с ускорением. Согласно [8, 9], оценка размера включений при таком механизме дробления может быть проведена по формуле:

$$d = \left(\frac{\sigma Bo^*}{4a\left|\rho_{\phi} - \rho_c\right|}\right)^{0.5}, \qquad (5)$$

где Во<sup>\*</sup> = 40 - критическое число Бонда [8], a – ускорение, направленное нормально к поверхности раздела сред. Для расчета взято максимальное значение ускорения  $a_{\text{max}} = 5 \cdot 10^3 \dots 57 \cdot 10^3 \text{ м/c}^2 \approx 510g \dots 5820g$  в рассматриваемых областях потока

#### ТЕПЛО- И МАССООБМЕННЫЕ АППАРАТЫ

| Г | a | б | Л | 2 |  |
|---|---|---|---|---|--|
|   |   |   |   |   |  |

|                                           |                           |                             | -                      | 1                        |                        | 1                       |                        | 1                               | 1                      |                                       |                | 1                     |                |                     |                      |                          |                        |       |
|-------------------------------------------|---------------------------|-----------------------------|------------------------|--------------------------|------------------------|-------------------------|------------------------|---------------------------------|------------------------|---------------------------------------|----------------|-----------------------|----------------|---------------------|----------------------|--------------------------|------------------------|-------|
| Область потока<br>цилиндрического узла    | Время, 10 <sup>-3</sup> с | <i>и<sub>тах,</sub></i> м/с | d <sub>min</sub> , MKM | $ \Delta u _{max}$ , M/C | d <sub>min</sub> , MKM | $ P _{max}, 10^5 \Pi a$ | d <sub>min</sub> , MKM | $ \Delta P _{max}, 10^5  \Pi a$ | d <sub>min</sub> , MKM | $ \Delta a _{max}, 10^3 \mathrm{M/c}$ | $d_{min}$ , MM | $b, 10^3  { m M/c^2}$ | $d_{min}$ , MM | u <sub>0,</sub> M/C | d <sub>min</sub> MKM | $	au, 10^2  \mathrm{Ma}$ | d <sub>min</sub> , MKM |       |
| внутренний статор на выходе из прорези    | -                         | 5,1                         | 6,4                    | 4,5                      | 19,2                   | 1,5                     | 1,4                    | 0,4                             | 10,5                   |                                       |                |                       |                | 0,2                 | 75,7                 | 0,9                      | 349,9                  |       |
| ротор на входе в прорезь                  |                           | 7,4                         | 3,0                    | 6,8                      | 8,4                    | 1,3                     | 1,5                    | 0,2                             | 16,7                   |                                       |                |                       |                | 0,3                 | 41,7                 | 2,0                      | 235,3                  |       |
| ротор на выходе из прорези                | 1,5                       | 5,1                         | 6,4                    | 4,5                      | 19,2                   | 1,4                     | 1,5                    | 0,3                             | 14,8                   |                                       |                |                       |                | 0,3                 | 39,2                 | 2,1                      | 225,6                  |       |
| межцилиндрический зазор                   |                           |                             |                        | 8                        | 6,1                    | 1,5                     | 1,4                    |                                 |                        |                                       |                |                       |                | 1,2                 | 5,1                  | 32                       | 58,1                   |       |
| внутренний статор на входе<br>в прорезь   |                           | 6,9                         | 3,5                    | 6,9                      | 8,2                    | 1,2                     | 1,7                    | 0,2                             | 20,0                   |                                       |                |                       |                | 0,2                 | 78,6                 | 0,8                      | 358,9                  |       |
| внутренний статор на выходе из прорези    | 1,61                      | 5,1                         | 6,4                    | 4,5                      | 19,2                   | 1                       | 2,0                    | 0,1                             | 28,6                   |                                       |                | 1,8                   | 0,6            | 0,2                 | 74,5                 | 0,9                      | 346,4                  |       |
| ротор на входе в прорезь                  |                           | 1,61                        | 8                      | 2,6                      | 8                      | 6,1                     | 1                      | 2,0                             |                        |                                       | 5,4            | 11,1                  | 1,2            | 0,8                 | 0,4                  | 25,9                     | 3,7                    | 171,2 |
| ротор на выходе из прорези                |                           |                             | 7,4                    | 3,0                      | 6,8                    | 8,4                     | 1,2                    | 1,7                             | 0,2                    | 20,0                                  | 20,7           | 5,7                   | 1,4            | 0,7                 | 0,4                  | 27,7                     | 3,4                    | 179,1 |
| межцилиндрический зазор                   | ]                         |                             |                        | 8                        | 6,1                    | 0,9                     | 2,4                    |                                 |                        |                                       |                | 5,8                   | 0,3            | 1,2                 | 5,1                  | 32                       | 58,1                   |       |
| внутренний статор на<br>входе в прорезь   |                           | 8                           | 2,6                    | 8                        | 6,1                    | 1,2                     | 1,7                    | 0,1                             | 40,0                   | 9,9                                   | 8,2            | 0,5                   | 1,1            | 0,2                 | 57,3                 | 1,3                      | 290,8                  |       |
| внутренний статор на<br>выходе из прорези | ī 1,67                    | 5,1                         | 6,4                    | 4,5                      | 19,2                   | 1,1                     | 1,8                    | 0,1                             | 28,6                   |                                       |                | 1,1                   | 0,8            | 0,2                 | 81,2                 | 0,8                      | 366,8                  |       |
| ротор на входе в прорезь                  |                           | 8                           | 2,6                    | 8                        | 6,1                    | 1,1                     | 1,8                    | 0,1                             | 28,6                   |                                       |                | 1,1                   | 0,8            | 0,3                 | 35,3                 | 2,4                      | 210,5                  |       |
| ротор на выходе из прорези                |                           | 7,4                         | 3,0                    | 6,8                      | 8,4                    | 1,3                     | 1,5                    | 0,2                             | 16,7                   |                                       |                | 1,6                   | 0,7            | 0,3                 | 29,3                 | 3,1                      | 185,7                  |       |
| межцилиндрический зазор                   |                           |                             |                        | 4,6                      | 18,6                   | 0,9                     | 2,3                    |                                 |                        |                                       |                | 0,2                   | 2,0            | 0,4                 | 7,8                  | 18,3                     | 76,9                   |       |
| внутренний статор на входе в прорезь      |                           | 6,9                         | 3,5                    | 6,9                      | 8,2                    | 1,4                     | 1,5                    | 0,3                             | 13,3                   | 1,98                                  | 18,4           | 1,3                   | 0,7            | 0,9                 | 75,0                 | 0,9                      | 347,8                  |       |

для различных моментов времени (табл. 1, 2). Оценка минимального размера дисперсных включений в рассматриваемых областях потока дает значения  $d_{\min} = 3...18$  мкм.

3. Акустические эффекты диспергирования. Эффекты гидродинамического дробления дисперсных включений в жидких многофазных средах достигаются при реализации механизмов принципа ДИВЭ [10], основными рабочими элементами которого являются парогазовые образования (пузырьки, каверны).

Высокочастотные колебания дисперсной среды, обусловленные импульсным изменением давления при пульсациях и разрушении парогазовых пузырьков на границе раздела взаимонерастворимых фаз, происходят с линейным ускорением b = du/dt, которое можно оценить, продифференцировав выражение для акустического давления [11]

$$b = \frac{1}{\rho_c C} \left| \frac{dP}{dt} \right| \,. \tag{6}$$

Согласно расчетным данным для рассматриваемой системы  $\left| \frac{dP}{dt} \right| \sim 107...109$  Па/с. Ускорения

потока в рассматриваемых областях потока (табл. 1, 2, рис. 2, 3), вызванные импульсным изменением давления, достигают значений  $0,2\cdot10^3...13\cdot10^3 \approx 20g...1300g$ . Оценить конечный размер частиц можно на основании числа Бонда [8]

$$d = \left(\frac{\sigma Bo^*}{4b\left|\rho_{\phi} - \rho_c\right|}\right)^{0.5} . \tag{7}$$

Оценка показывает, что минимальный конечный размер частиц дисперсной фазы соответствует 300 мкм.

4. Дробление дисперсных включений в турбулентном потоке жидкости. Согласно теории изотропной турбулентности [12], дробление дисперсных включений в турбулентном потоке происходит благодаря пульсациям, масштаб которых сопоставим с разме-



Рис. 2. Кривые изменения в междисковом зазоре по оси периферийного канала статора: 1 — давления P; 2 — линейного ускорения b (рассчитанного по выражению (6)), 3 — минимального размера дисперсных включений d<sub>min</sub> (выражение (3)).



Рис. 3. Кривые изменения в межцилиндрическом зазоре между ротором и внешним статором: 1 — давления Р; 2 — линейного ускорения b (рассчитанного по выражению (6)), 3 — минимального размера дисперсных включений d<sub>min</sub> (выражение (3)).

рами включений. По теории локально однородной изотропной турбулентности диаметр включений

$$d = k \left(\frac{\sigma^3}{\rho_c^3 \varepsilon^2}\right)^{0,2} , \qquad (8)$$

где  $\varepsilon$  — скорость диссипации энергии турбулентности (табл. 1-3), k — эмпирическая константа, равная 0,725...3,5 [9, 10, 12, 13]. Расчетные данные свидетельствуют о том, что в междисковом и межцилиндрических зазорах происходит наибольшая диссипация кинетической энергии турбулент-

Табл. 3.

| Выражение<br>для оценки<br>размера<br>включений | (1) | (2) | (3) | (4) | (5) | (7)  | (8)  | (9) | (10)  |
|-------------------------------------------------|-----|-----|-----|-----|-----|------|------|-----|-------|
| <i>d<sub>min</sub>,</i> мкм                     | 17  | 268 | 110 | 240 | 318 | ≥300 | 1737 | 580 | 60350 |

ности. В этих областях потока происходит трансформация кинетической энергии потока в энергию деформации и, следовательно, дробление дисперсных включений. Максимальные значения скорости диссипации  $\varepsilon_{max} = 0,59 \cdot 10^5 \dots 8,3 \cdot 10^5 \text{ м}^2/\text{c}^3$ достигаются на входе в каналы ротора дискового узла, которые являются эффективными зонами дробления в турбулентном потоке. Данный механизм дробления дает конечный размер дисперсных включений  $d_{min} = 17 \dots 37$  мкм.

5. Дробление вблизи стенок. Вблизи стенки в пределах вязкого подслоя довольно резкое изменение пульсационных скоростей (велики поперечные градиенты скорости), и средняя скорость имеет логарифмический профиль. В работе [14] показано, что наименьший размер дисперсных включений

$$d \approx \sqrt{\frac{\sigma v}{6\rho_{\phi} u_0^3}} , \qquad (9)$$

где  $u_0 = \sqrt{\tau/\rho}$  (табл. 1, 2),  $v = 1,6 \cdot 10^{-5} \text{ м}^2/\text{c}$  [15]. Таким образом, конечный размер включений в пристеночной области дискового узла у границы вязкого подслоя достигает значений 25...70 мкм и в области цилиндрического узла – 5...80 мкм.

6. Сдвиговый механизм. Под воздействием внешних сил в измельчаемых частицах возникают объемно-напряженные состояния, приводящие с ростом его интенсивности к разрушению включений дисперсной фазы. В сдвиговом потоке дисперсные включения совершают вращательное движение. Размер твердых включений дисперсной фазы, в которых возникают центробежные напряжения [3]

$$d = \left(\frac{\tau_u}{0, 4\omega_\phi^2 \rho_\phi}\right)^{0.5}, \qquad (10)$$

где  $\omega_{\phi} \cong 0.5 \frac{du_x}{dy}$  — угловая скорость вращения

частиц дисперсной фазы;  $\tau_{\mu}$  – центробежное напряжение (табл. 1, 2). При данном механизме дробления конечный размер дисперсных включений  $d_{\min} = 60...360$  мкм. Наиболее эффективными областями диспергирования при таком механизме дробления являются области междискового и межцилиндрических зазоров.

**7. Механическое разрушение.** Из [16] известно, что разрушающее механическое напряжение для объектов нашего исследования (дисперсных частиц твердых включений) составляет: для стрептоцида  $27 \cdot 10^5$  Па, для серы –  $5,6 \cdot 10^5$  Па. Сравнивая эти значения с полученными перепадами давления (табл. 1, 2, рис. 2, 3), можно сделать вывод о том, что значений перепадов давления достаточно, чтобы осуществить механическое разрушение частиц твердых включений.

Результаты оценочных расчетов конечных размеров дисперсных включений для рассматриваемой системы при различных механизмах дробления приведены в табл. 3. Из рассмотренных причин дробления доминирующими являются возмущения, приводящие дисперсную систему к неустойчивости Кельвина-Гельмгольца (выражения (1)-(4)) и Релея-Тейлора (выражение (5)). Такие механизмы дробления обеспечивают конечный размер частиц на микронном уровне, а в момент перекрытия каналов статора и ротора дискового узла достигается и субмикронный уровень дробления. Включения дисперсной фазы, попадая в пристеночную область внутренней поверхности РПА у границы вязкого подслоя, дробятся до микронного уровня (выражение (9)). Интенсивность воздействия гидродинамических возмущений, возникающих за счет акустических эффектов (выражения (6)-(7)), позволяют получать грубодисперсные системы. При сдвиговом механизме дробления (10) наиболее эффективными являются области междискового и межцилиндрических зазоров, где конечный размер дисперсных включений достигает 40...60 мкм в момент полного перекрытия каналов и щелей статорно-роторных пространств.

Отметим, что оценочные расчеты размеров дисперсных включений согласуется с полученными [4, 17, 18] экспериментальными значениями размеров продиспергированных в РПА частиц.

### Выводы

1. С учетом преобладающих частных механизмов дробления можно уточнить особенности процесса диспергирования и прогнозировать дисперсность исследуемых систем, а также оценить эффективные зоны для процесса диспергирования.

2. Полученные результаты дают возможность указать направления оптимального конструирования и мероприятия с целью повышения эффективности тепломассообменных процессов в РПА дисково-цилиндрического типа.

## ЛИТЕРАТУРА

1. Долинский А.А., Басок Б.И. Роторно-импульсный аппарат. Сообщения 1,2,3// Промышленная теплотехника. — 1998. — Т. 20. — № 6. — С. 7 — 10; — 1999. — Т. 21. — № 1. — С. 35; — 1999. — Т. 21. — № 2-3. — С. 3-5.

2. *Балабудкин М.А.* Роторно-пульсационные аппараты в химико-фармацевтической промышленности. – Л.: Химия. 1983. – 160 с.

3. *Промтов М.А.* Пульсационные аппараты роторного типа: теория и практика.- М.: Машиностроение-1, 2001.- 260 с.

4. Грабов Л.Н., Мерщий В.И., Грабова Т.Л., Посунько Д.В. Проблема трансформации энергии в системе "твердое тело - жидкость" при тонком и супертонком диспергировании// Промышленная теплотехника. 2001. – Т. 23.– № 4-5. – С. 74-80.

5. *Круковский П.Г., Грабов Л.Н., Юрченко Д.Д., Грабова Т.Л.* Трехмерная CFD-модель гидродинамических процессов в реактронном аппарате// Промышленная теплотехника. – 2004. – Т. 26.– № 4.– С. 5-12.

6. *Патент* Украины №20698 Реактронный гомогенизатор/ Грабов Л.Н., Мерщий В.И., Жилеев В.Т. 7. Патент України №55709 Спосіб гідродинамічної обробки гетерогенних рідких середовищ та гідродинамічний диспергатор-змішувач для його здійснення/ Грабов Л.М., Мерщій В.І., Грабова Т.Л.

8. *Нигматулин Р.И*. Динамика многофазных сред. Ч.1.– М.:Наука, 1987.– 464 с.

9. Абиев Р.Ш. Исследование течения газожидкостной системы в трубе с периодически меняющимся сечением// Химическая промышленность.— 2003. — Т. 80. — № 12. — С. 10-17.

10. Долинский А.А., Басок Б.И., Накорчевский А.И. Адиабатически вскипающие потоки. Теория, эксперимент, технологическое использование.— К.: Наукова думка, 2001.— 207 с.

11. *Маргулис М.А*. Основы звукохимии. Химические реакции в акустических полях. – М.: Высшая школа, 1984. – 272 с.

12. *Колмогоров А.Н.* О дроблении капель в турбулентном потоке// Докл. АН СССР. – 1949. – Т. 66. – № 5. – С. 825-828.

13. Басок Б.И., Пироженко И.А., Булавка А.В. Дисперсный анализ соевой пасты, полученной при роторно-пульсационной гомогенизации// Промышленная теплотехника. – 2003. – Т. 26. – № 4. – С. 88-92.

14. Левич В.Г. Физико-химическая гидродинамика.– М.: Физматгиз, 1959.– 699 с.

15. Ли В.Н., Соболенко А.К., Бузовский А.Н. Исследования качества суспензионных мазей изготовленных на основе вазелина// Фармация.— 1990.— № 2.— С. 33-34.

16. *Маркова Л.М., Балабудкин М.А*. Прочностные характеристики частиц некоторых лекарственных порошков // Химико-фармацевтический журнал. – 1979. – № 11. – С. 112-113.

17. Грабов Л.Н., Мерщий В.И. и др. Исследование процесса диспергирования в системе "твердое тело-жидкость" в тепломассообменных технологиях. // Промышленная теплотехника.— 2003. — Т. 25.— № 4.— С. 60-64.

18. *Грабова Т.Л.* Воздействие ДИВЭ на свойства кремнийорганических сорбентов// Промышленная теплотехника. – 2004.– Т. 26.– № 6. – С. 9-15.

Получено 25.05.2006 г.