ТЕПЛО- И МАССООБМЕННЫЕ АППАРАТЫ

УДК 621.184.2 Басок Б.И., Гоцуленко В.В.

Институт технической теплофизики НАН Украины

ПЕРИОДИЧЕСКИЕ ДВИЖЕНИЯ ТЕПЛОНОСИТЕЛЯ В МОДЕЛЯХ ЭЛЕМЕНТОВ ПАРОГЕНЕРАТОРОВ

Розглянуто задачу самозбудження автоколивань у пароутворюючому витку прямоточного парогенератора. Встановлено причини утворення та можливості усунення нестійкої спадаючої гілки на залежності гідровтрат від витрати. Використовуючи напірну характеристику теплопідводу витка канала пароутворення, визначаються і досліджуються властивості автоколивань при пароутворенні.

- L_a акустическая масса витка канала парообразования;
- *C_a* акустическая гибкость витка канала парообразования;
- *P* давление;
- *G* массовый расход среды;
- $h_{\rm T}(G)$ тепловое сопротивление;
- $h_{\Sigma}(G)$ суммарные гидравлические потери;
- Z волновое сопротивление витка канала парообразования;
- τ время запаздывания.

Введение

При определенных условиях в парообразующем витке прямоточного котла возникают автоколебания, амплитуды которых могут достигать значительных величин, что может приводить к появлению аварийных ситуаций. Большинство работ по исследованию этой проблемы [1] носит экспериментальный характер и содержит качественный анализ опытных данных. Доказано [1], что основную роль в динамике процессов парогенерации играет жидкостной участок. При исследовании простейших моделей обычно полагается, что тепловой

Рассмотрена задача самовозбуждения автоколебаний в парообразующем витке прямоточного парогенератора. Установлены причины образования и возможности устранения неустойчивой нисходящей ветви на зависимости гидропотерь от расхода. Используя напорную характеристику теплоподвода витка канала парообразования, определяются и исследуются свойства автоколебаний при парообразовании.

The problem of self-excitation of self-oscillations in a coil of a direct-flow steam and gas generator is considered. The reasons of occurrence and opportunity of elimination of a unstable descending branch are established on dependences of hydrolosses on the charge. Using the pressure head characteristic of a supply of heat of a coil of the channel of steam formation, properties of self-oscillations are defined and investigated at steam formation.

Индексы верхние:

 в области перехода ламинарного режима движения в турбулентный.

Индексы нижние:

- *t* в зоне подвода теплоты;
- ж жидкость;
- п пар;
- см на испарительном участке;
- др дроссель;
- н на входе;
- к на выходе.

поток на этом участке постоянен вдоль витка парогенератора и во времени. Простейшая модель витка рассмотрена в [1], где введено время τ_n запаздывания, необходимое для приращения теплосодержания воды на величину $i' - i_0$. Установлено, что пароприход в момент времени *t* равен расходу воды в момент $t - \tau_n$, где τ_n время прохождения водой подогреваемого участка, т.е. $G_t = W_{(t-\tau)}, W$ – расход воды из коллектора, G – расход образовавшегося пара.

Вторым механизмом автоколебаний является появление зоны многозначности на характеристике гидравлических потерь от расхода [2], т.е. наличие на ней нисходящей ветви.

Таким образом, автоколебания жидкости при ее парообразовании порождаются механизмами: транспортного запаздывания, запаздывания парообразования τ_n и образования нисходящей ветви на зависимости гидропотерь от расхода $\Delta P = f(G)$. Влияние переменного теплового потока на линейную устойчивость парообразования в простейшей модели витка рассмотрено в [3].

Постановка задачи

Задачей данной работы является установление причин образования неустойчивой нисходящей ветви на зависимости $\Delta P = f(G)$, а также теоретический анализ возможностей ее устранения. Используя напорную характеристику теплоподвода витка канала парообразования, определяются и исследуются свойства автоколебаний при парообразовании.

Гидравлические потери по длине на участке *dx* нагрева потока жидкости определяется зависимостью:

$$dP = -\lambda \frac{dx}{d} \rho \frac{w^2}{2} , \qquad (1)$$

где $\lambda = \frac{0.3164}{\text{Re}_{\pi}^{0.25}}$ – для турбулентного режима

движения в гидравлически гладких трубах, $\text{Re}_{\text{ж}} = wd/v_t -$ критерий Рейнольдса, $v_t -$ коэффициент кинематической вязкости нагреваемой жидкости до температуры начала ее кипения.

Вторым уравнением, используемым далее, является соотношение, определяющее массовый расход:

$$G = \rho_t w S. \tag{2}$$

Исключив в зависимости (1) величину скорости *w*, определяемую из (2), получим следующее уравнение:

$$dP = -\frac{0.3164 v_t^{0.25} G^{1.75}}{2 \left(\frac{\pi}{4}\right)^{1.75} d^{4.75} \rho_t^{0.75}} dx.$$
 (3)

Интегрируя (3) определим величину потерь давления на участке $0 \le x \le \Delta l$:

$$\int_{p_{\mu}}^{p_{\kappa}} dP = -\frac{0,3164\nu_{t}^{0,25}G^{1,75}}{2\left(\frac{\pi}{4}\right)^{1,75}d^{4,75}\rho_{t}^{0,75}}\int_{0}^{\Delta\ell} dx$$
(4)

откуда

$$p_{\kappa} - p_{\mu} = \frac{0.3164\nu_t \left(t_{\infty}\right)^{0.25} G^{1.75} \Delta \ell}{2\left(\frac{\pi}{4}\right)^{1.75} d^{4.75} \rho_t^{0.75}}.$$
 (5)

Для участка $\Delta l/d > 50$ с начальной температурой жидкости $t_{x} = 20$ °С из критериального уравнения для турбулентного режима движения [4]:

$$Nu_{\pi d} = 0,021 \cdot Re_{\pi d}^{0,8} Pr_{\pi}^{0,43} \left(\frac{Pr_{\pi}}{Pr_{cr}}\right)^{0,23},$$
(6)

при заданной температуре стенки $t_{\rm ct}$ определяем критерий Нуссельта Nu_{жd}, а затем коэф-фициент теплоотдачи $\alpha = {\rm Nu}_{xd} \frac{\lambda_x}{d}$. Далее при заданном массовом расходе жидкости G определяется количество теплоты Q, переданное жидкости на участке $\Delta l: Q = \pi d\Delta l\alpha (t_{ct} - t_{w})$, а из зависимости $Q = c_{\rm B}G(t_{\rm m}^{\rm K} - t_{\rm m}^{\rm Hay})$ определяется температура жидкости t_{x}^{κ} , с которой она входит в следующий участок нагрева. При значении t_{x}^{κ} определяется v_{t} и потери давления по формуле (5) на втором участке нагрева жидкости. После этого полагаем $t_{*}^{\text{нач}}$ равной температуре t_{*}^{κ} на предыдущем участке нагрева, и вычисляем потери на этом участке, и т.д. до тех пор, пока t_{*}^{κ} не станет равной температуре кипения жидкости. Суммируя потери ΔP_i на всех участках Δl_i и полагая $\Delta P(G) = \sum \Delta P_i$, окончательно получая зависимость $\Delta P = f'(G)$.

При ламинарном режиме $\lambda = 64/\text{Re}_{\pi}$, используя зависимости (1) и (2), по аналогии с турбулентным режимом определяются гидравлические потери:

$$\Delta P = p_{\kappa} - p_{\mu} = \frac{128 \cdot G \nu_t \left(t_{\kappa} \right) \Delta \ell}{\pi d^4}.$$
(7)

Из критериального уравнения для ламинарного режима [4]

$$Nu_{\#d} = 0,15 \cdot Re_{\#d}^{0,33} Pr_{\#}^{0,43} Gr_{\#d}^{0,1} \left(\frac{Pr_{\#}}{Pr_{cT}}\right)^{0,25},$$
(8)

определяется коэффициент теплоотдачи α , затем температура жидкости t_{x}^{κ} в конце первого участка нагрева. Дальнейший расчет происходит в полной аналогии с турбулентным режимом. В результате получается зависимость $\Delta P = f(G)$ для ламинарного режима движения жидкости.

Ниже построена зависимость $\Delta P = f(G)$ (рис. 1), когда диаметр трубы d = 0,05 м, температура воды на входе $t_{\pi} = 20$ °С и на начальном участке режим движения был ламинарным, и далее с повышением температуры и расхода G перешел в турбулентный.

Рис. 1. Гидравлические потери ΔP = f (G) при движении воды на подогревательном участке витка парообразования.

Согласно рис. 1 на подогревательном участке, нисходящая ветвь на зависимости $\Delta P = f(G)$ отсутствует и в связи с этим единственным механизмом возбуждения автоколебаний в этом случае является запаздывание парообразования [1], которое наблюдается совместно с транспортным запаздыванием.

На испарительном участке величина температуры воды остается постоянной, возрастает скорость потока *w*_{см} из-за парообразования, что порождает тепловое сопротивление процесса.

Тепловое сопротивление испарительного участка витка парообразования

Теплота *q*, подводимая к кипящей воде, изменяет ее энтальпию при переходе жидкости в пар. Изменение скорости потока из-за преобразования воды в пар составляет тепловое сопротивление [5,6]

$$h_{\mathrm{T}}(G) = \frac{G^2}{2S^2\rho'} \left[1 - \left(\frac{\rho'}{\rho''}\right)^2 \right],$$

обусловленное изменением скорости потока изза подвода теплоты, которое является местным сопротивлением в области парообразования, что в ранее выполненных работах отсутствует.

Рис. 2. Зависимости: а) тепловых потерь $h_{_{T}}(G); \, \delta)$ суммарных потерь $h_{_{\Sigma}}(G).$

Зависимость $h_{T}(G)$, приведенная на рис. 2,а, является монотонно убывающей отрицательной функцией расхода *G*. Это приводит к образованию нисходящего участка на зависимости суммарных потерь $h_{\Sigma}(G) = \Delta P(G) + h_{T}(G)$,

имеющих место в витке прямоточного котла, что приведено на рис. 2,6.

По аналогии с диффузором, который является местным гидравлическим сопротивлением и содержит потери по длине, участок подвода теплоты при наличии парообразования будем также считать местным гидравлическим сопротивлением $h_{\mathbf{n}}(G)$. Поэтому рассматриваемые потери состоят из теплового сопротивления $h_{r}(G)$ и сопротивления вязкостного трения $h_l(G)$, величину которого полагаем, как $h_{l}(G) = k_{l}G^{2}$, ее значение можно определить экспериментально. Влияние на устойчивость процесса парообразования потерь $h_i(G)$ является стабилизирующим, которое можно определить по соответствующей величине *k*₁. Таким образом, гидравлические потери на участке парообразования и перегрева пара состоят из суммы $h_{II}(G) = h_{II}(G) + h_{II}(G)$.

Согласно формулам (5) и (7) зависимость гидравлических потерь $\Delta P = f(G)$ при движении воды на подогревательном участке витка парообразования для разных режимов движения определяется следующим выражением:

$$\Delta P = \begin{cases} k_1 G & \text{при } G \le G^* \\ k_2 G^{1,75} & \text{при } G > G^*, \end{cases}$$
(9)

где G^* – значение расхода, при котором происходит смена ламинарного режима движения на турбулентный, т.е. при $G > G^*$ выполняется неравенство Re > 2320, а при $G \le G^*$ имеет место Re ≤ 2320 . В точке сопряжения имеем $k_1G^* = k_2 \{G^*\}^{-1.75}$. При расчетах более удобно пользоваться следующей формулой

$$\Delta P = k_1 G + k_2 (G - G^*)^{1,75} \approx k_2 G^{1,75},$$

которая лишь немного сглаживает область перехода ламинарного режима в турбулентный. Таким образом, окончательно получаем

$$h_{\Sigma}(G) = \begin{cases} k_1 G + h_{T}(G) & \text{при } G \leq G^*, \\ k_1 G + k_2 (G - G_*)^{1,75} + \\ + h_{T}(G) & \text{при } G > G^*, \end{cases}$$
(10)

где
$$h_{\mathrm{T}}(G) = h_{\mathrm{T}}G^2$$
, $k_{\mathrm{T}} = \frac{1}{2S^2\rho'} \left[1 - \left(\frac{\rho'}{\rho''}\right)^2 \right] < 0$.

Анализ зависимости (10) показывает, что с сужением области ламинарного режима нисходящая ветвь на зависимости суммарных потерь $h_{\Sigma}(G)$ ослабевает и далее вовсе исчезает. Нисходящая ветвь на зависимости $h_{\mathbf{y}}(G)$ появляется в области перехода ламинарного режима в турбулентный. При отсутствии области ламинарного режима зависимость $h_{r}(G)$ является квадратичной: $h_{\Sigma}(G) \approx kG^2$. Если режим в трубе турбулентный, коэффициент теплоотдачи α падает вдоль трубы до постоянного значения. Также падение α наблюдается и при ламинарном режиме, но при его разрушении величина α возрастает, а затем убывает и стремится к некоторому постоянному значению [7]. Поэтому при турбулентном режиме зависимость $\Delta P(G)$ является возрастающей, а неустойчивая ее ветвь образуется при переходе ламинарного режима в турбулентный.

Автоколебания в витке прямоточного котла

Для модели контура витка канала парообразования (рис. 3) получим систему дифференциальных уравнений нестационарного движения.

Возможные формы движения воды, как в горизонтальных, так и вертикальных трубах парогенератора рассматривались в ряде публикаций, например в [2]. Уравнение движения для массового расхода *G* в канале независимо от формы движения потока имеет вид:

$$L_{a}\frac{dG}{dt} = p_{\rm H} - p_{\rm \kappa} - h_{\Sigma}(G), \qquad (11)$$

где $L_a = l/S$, l – общая длина канала трубы, S – площадь ее нормального сечения.

Уравнение сохранения массы в канале (рис. 3) при нестационарном движении определяется как:

$$\frac{dM}{dt} = G(t - \tau_n) - G_n,$$

где $M = M_1 + M_2$, изменение массы $\frac{d}{dt}(M_1 + M_2) =$

ISSN 0204-3602. Пром. теплотехника, 2010, т. 32, №4

Рис. 3. Схема модели контура витка канала парообразования.

$$= V_{1} \frac{d\rho_{cM}}{dt} + V_{2} \frac{d\rho_{n}}{dt},$$
и учитывая, что $dp_{\kappa}/d\rho_{cM} =$
= c_{1}^{2} и $dp_{\kappa}/d\rho_{n} = c_{2}^{2}$, тогда $(C_{a_{1}} + C_{a_{2}})\frac{dp_{k}}{dt} =$
= $G(t - \tau_{n}) - G_{n}$, или
 $C_{a} \frac{dp_{k}}{dt} = G(t - \tau_{n}) - G_{n}$, (12)

где акустическая гибкость C_a состоит из суммы $C_{a1} + C_{a2}$, $C_{a1} = V_1/c_1^2 -$ где акустическая гибкость объема V_1 парообразования, c_1 – скорость распространения звука в двухфазной среде, $C_{a2} = V_2/c_2^2$, V_2 – объем участка трубы с паром, c_2 – скорость распространения звука на этом участке.

Давление воды в паровом коллекторе $P_0^* = \text{const}$, а потери давления на шайбе на входе в трубу определяются уравнением:

$$P_0^* - p_{\rm H} = k_{\rm III} G^2.$$
(13)

В паровом коллекторе также давление пара $P_{\Pi}^{*} = \text{const}$, а расход пара из трубы определяет-ся зависимостью:

$$p_{\rm k} = k_{\rm III2} G_{\rm II}^{\ 2} \,. \tag{14}$$

Систему уравнений (11) – (14) запишем в следующей, окончательной для дальнейших построений форме:

$$\begin{cases} L_a \frac{dG}{dt} = F(G) - p_\kappa, \\ C_a \frac{dp_k}{dt} = G(t - \tau_n) - \varphi(p_\kappa), \end{cases}$$
(15)

где $F(G) = P_0^* - k_{m_I}G^2 - h_{\Sigma}(G)$ – напорная характеристика обогреваемой трубы парогенера-

тора, а обращение функции $\phi(p_{\kappa})$ определяется зависимостью (14).

Исключив в динамической системе (15) время *t*, получим уравнение интегральных кривых:

$$\frac{dp_k}{dG} = \frac{G(t - \tau_{\pi}) - \varphi(p_{\kappa})}{F(G) - p_{\kappa}} \frac{L_a}{C_a},$$
(16)

интегрируя которое совместно с (14) определяется предельный цикл, соответствующий периодическому автоколебательному решению системы (15).

Варьируя волновое сопротивление $Z = \sqrt{L_a/C_a}$ и запаздывание τ_n , а также применяя переменное шайбование на входе в виток и на выходе из него, можно изменить предельный цикл и соответствующие ему автоколебательные решения системы (15). С ростом волнового сопротивления, автоколебания $p_{\kappa}(t)$ стремятся к релаксационной форме, а соответствующий им предельный цикл состоит из участков характеристики F(G) (участка медленных движений) и двух соединяющих их горизонтальных отрезков (участков быстрых движений).

Таким образом, амплитуду релаксационных автоколебаний можно определить непосредственно по характеристике F(G), не интегрируя систему (15). Изменять волновое сопротивление Z можно как варьированием акустической гибкости C_a , так и акустической массы L_a . С понижением значений C_a повышается частота автоколебаний $p_{\kappa}(t)$ (рис. 4).

При значениях $C_a \rightarrow 0$ предельный цикл исчезает, преобразуясь в устойчивый фокус (рис. 4,а) даже на неустойчивой восходящей

Рис. 4. Характер преобразования автоколебаний $p_{\kappa}(t)$ и соответствующего им предельного цикла уравнения интегральных кривых (16) при варьировании акустической гибкости $C_a(r) = rC_a$, $C_a = 10^{-5}$, $L_a = 1,273 \times 10^3$ при: a) r = 3; б) r = 1/2; в) r = 1/20; г) r = 1/2500; д) r = 1/15000.

ветви характеристики F(G). С ростом величины C_a амплитуда автоколебаний $p_{\kappa}(t)$ вначале растет до некоторой величины, а далее уменьшается, стремясь к предельному значению соответствующему релаксационным колебаниям (рис. 4,а) с независящим от дальнейшего увеличения акустической гибкости C_a предельным циклом.

Получить релаксационные автоколебания $p_{\kappa}(t)$ можно также понижением значений акустической массы $L_a \rightarrow 0$ (рис. 5,г). В этом случае колебания являются низкочастотными и их частота возрастает с уменьшением L_a . С увеличением L_a предельный цикл релаксационных автоколебаний $p_{\kappa}(t)$ вначале нарастает (рис. 5,б), а затем бифурцирует в устойчивый фокус (рис. 5,а).

Рис. 5. Характер преобразования автоколебаний $p_{\kappa}(t)$ и соответствующего им предельного цикла уравнения интегральных кривых (16) при варьировании акустической массы $L_a(r) = rL_a$, $C_a = 10^{-5}$, $L_a = 1,273 \times 10^3$ при: a) r = 5000; б) r = 1/2; в) r = 10; г) r = 3; д) r = 1/2.

Как отмечалось, в [2] устранить зону многозначности (в нашей терминологии участок отрицательного сопротивления - нисходящую ветвь) на зависимости гидравлических потерь от расхода, можно применением шайбования (дросселирования) на входе в виток парогенератора. В [2] приведены экспериментальные результаты (рис. 2.18, стр. 67) иллюстрирующие нейтрализацию нисходящей ветви и образование точки перегиба на зависимости гидравлических потерь от расхода при увеличении сопротивления дросселя. Данная процедура согласно определению напорной характеристики теплоподвода $F(G) = P_0^* - k_{\text{III}}G^2 - h_{\Sigma}(G)$ приводит к нейтрализации ее неустойчивой восходящей ветви, и тем самым к снижению амплитуды автоколебаний $p_{r}(t)$ (рис. 6). Также на рис. 6 представлена деформация зависимости выше полученных теоретическим путем суммарных потерь $h_{s}(G)+k_{m1}G^2$ (10)по расходу G с изменением коэффициента

шайбования на входе в виток парогенератора, приводящая к образованию точки перегиба и исчезновению зоны многозначности (т.е. нисходящей ветви).

Шайбование можно осуществлять и на парогенератора. выходе ИЗ витка Однако в этом случае характер динамики дви-Это связано усложняется. жения С тем, что с увеличением коэффициента шайбования k_{m2} на выходе из витка рабочий режим смещается в зону малых расходов, что приводит к следующему изменению предельного цикла и амплитуды соответствующих ему автоколебаний $p_{..}(t)$ (рис. 7).

Из устойчивого фокуса на падающей ветви F(G) рождается предельный цикл, который возрастает до определенного значения стационарного режима (рис. 7,в) и с дальнейшим увеличением k_{m2} уменьшаясь, вовсе исчезает, преобразовавшись снова в устойчивый фокус на падающей ветви F(G) в зоне малых расходов

Рис. 6. Характер деформации суммарных гидравлических потерь $h_{\Sigma}(G)+k_{ml}G^2$ и автоколебаний $p_{\kappa}(t)$ с изменением коэффициента k_{ml} шайбования на входе в виток парогенератора при: а) $k_{ml}=0$; б) $k_{ml}=5 \times 10^3$; в) $k_{ml}=10^4$; г) $k_{ml}=5 \times 10^4$.

Рис. 7. Характер деформации предельного цикла уравнения интегральных кривых (16) с изменением коэффициента $k_{\rm m2}$ шайбования на выходе из витка при: a) $k_{\rm m2}$ =6,205x10⁶; б) $k_{\rm m2}$ =5,287x10⁶; в) $k_{\rm m2}$ =3,284x10⁶; г) $k_{\rm m2}$ =2,558x10⁶; д) $k_{\rm m2}$ =2,477x10⁶.

(рис. 7,а).

Дальнейший математический анализ динамической системы (15) показывает, что с ростом τ_{Π} предельный цикл, соответствующий низкочастотным автоколебаниям $p_{\kappa}(t)$ по форме близких к гармоническим, вытягивается вдоль ветвей характеристики F(G), увеличивая амплитуду автоколебаний $p_{\kappa}(t)$. В этом случае также уменьшается частота колебаний.

Преобразование низкочастотных релаксационных автоколебаний $p_{\kappa}(t)$, полученных понижением волнового сопротивления с помощью увеличения C_a , и их предельного цикла с ростом τ_{Π} осуществляется следующим образом: с увеличением τ_{Π} к релаксационному предельному циклу присоединяются участки нисходящих ветвей характеристики F(G), что приводит к увеличению амплитуды колебаний $p_{\kappa}(t)$ и снижению их частоты.

Характер преобразования высокочастотных автоколебаний $p_{\kappa}(t)$ близких к гармоническим и соответствующего им предельного цикла с увеличением запаздывания τ_{n} аналогичен соответствующим перестройкам низкочастотных колебаний. Однако значения τ_{n} в этом случае отличаются на порядок.

Выводы

1. На участке подогрева жидкости гидравлические потери от расхода монотонно возрастают, а перед вскипанием жидкости действует механизм запаздывания τ_n парообразования. В области парообразования проявляется также транспортное запаздывание τ .

2. Нисходящая ветвь на зависимости суммарных потерь от расхода образуется в области перехода ламинарного режима в турбулентный и ее интенсивность пропорциональна длине участка ламинарного течения. Причем причиной ее образования является нисходящая ветвь теплового сопротивления $h_{\rm T}(G)$, а образование восходящей ветви F(G) и ее интенсивность dF/dG существенно зависят от области ламинарного режима в потоке.

3. Используя механизмы запаздывания и отрицательных сопротивлений, определены автоколебания, возникающие при парообразовании. Рассмотрены способы управления их амплитудой: путем шайбования на входе, что изменяет напорную характеристику теплоподвода, шайбованием на выходе из витка парообразования, которое позволяет рабочий режим сместить с неустойчивой области. Установлен характер деформации автоколебаний как релаксационных, так и близких к гармоническим, при варьировании волнового сопротивления парообразующего витка.

ЛИТЕРАТУРА

1. *Морозов И.И*. Неустановившееся движение теплоносителя в обогреваемых трубах мощных парогенераторов / И.И. Морозов // Инженерно – физический журнал. – 1964. – Т. VII, № 4. – С. 51 – 57.

2. Лелеев Н.С. Неустановившееся дви-

жение теплоносителя в обогреваемых трубах мощных парогенераторов / Лелеев Н.С. – М.: Энергия, 1978. – 288 с.

3. *Морозов И.И.* Влияние переменности теплового потока на устойчивость рабочего процесса прямоточного парогенератора / И.И. Морозов // Инженерно – физический журнал. – 1964. – Т. VII, № 4. – С. 51 – 57.

4. *Михеев М.А.* Основы теплопередачи / Михеев М.А. – М.: Наука, 1956. – 392 с.

5. Басок Б.И. Проблема термоакустических колебаний и вибрационного горения / Б.И. Басок, В.В. Гоцуленко // Техническая теплофизика и промышленная теплоэнергетика: сборник научных трудов.– Д., 2009. Выпуск 1.– С. 5–15.

6. Гоцуленко В.В. Тепловое сопротивление как механизм возбуждения автоколебаний / В.В. Гоцуленко, В.Н. Гоцуленко // Сборник научн. трудов Днепродзержинского гос. техн. ун-та. – Днепродзержинск, 2009. – Вып. 1(11). – С. 95 – 100.

7. *Исаченко В.П.* Теплопередача / Искаченко В.П., Осипова В.А., Сукомел А.С. – М.: Энергоиздат, 1981. – 416 с.

Получено 30.03.2010 г.