УДК 553.98:622.276

Н.Ю. Нестеренко¹, А. Клейнас², Ю.М. Вихоть^{1,3}, А.П. Боднарчук¹, В.В. Иванов¹, Л.В. Гаврилец¹

ЛИТОЛОГО-ПЕТРОФИЗИЧЕСКИЕ И НЕФТЕОТДАЮЩИЕ СВОЙСТВА ПОРОД-КОЛЛЕКТОРОВ ПАКЕРОРТСКОГО ГОРИЗОНТА И ДЕЙМЕНАСКОЙ СЕРИИ БАЛТИЙСКОЙ НЕФТЕНОСНОЙ ОБЛАСТИ

Согласно результатам литолого-петрографических исследований породы-коллекторы, вскрытые скважинами Лижяй-1 (2129,7 м), Вежайчяй-11 (2046,8 м), образовались в прибрежно-морских условиях, а вскрытые скважиной Лижяй-1 (2127,6 м) – в условиях морского шельфа. Матрица пород характеризуется довольно высокими фильтрационно-емкостными свойствами: проницаемость (с учётом эффекта Клинкенберга) изменяется от 0.1×10^{-15} м² до 80.1×10^{-15} м², открытая пористость – от 4.1 до 13.3 %.

Экспериментально установлено, что по отношению к объему эффективных пор, в зависимости от проницаемости пород, структура нефтенасыщенности выглядит следующим образом: свободноподвижная нефть – 34–67 %, пленочная нефть – 30–41 %, адсорбированная нефть – 2–30 %. Коэффициенты вытеснения нефти водой за безводный период составляют 0,34–0,67, а максимально возможные (с внедрением вторичных методов повышения нефтеотдачи) при заводнении – 0,46–0,77.

Ключевые слова: порода-коллектор; открытая, эффективная и динамическая пористости; структура нефтенасыщенности; коэффициенты вытеснения нефти.

Введение

В научной и методической литературе недостаточно освещен вопрос о возможностях экспериментального изучения пород-коллекторов на микроуровне, что приводит к использованию в практике обобщенных петрофизических моделей, неадекватно описывающих физические свойства коллекторов, сформированных в различных геологических условиях осадконакопления. Достаточно низкий уровень физического моделирования процессов вытеснения флюидов не способствует решению одной из актуальнейших научных проблем нефтегазопромысловой геологии – обоснованию флюидонасыщенности и максимально возможных показателей нефтеизвлечения из пород-коллекторов. От этого зависит объективность решения ряда прикладных задач, в частности, от обоснования отдельных параметров кондиций пород-коллекторов до подсчета общих и извлекаемых запасов углеводородов, создания геолого-геофизических основ эффективной разработки месторождений.

Цель работы

Цель данной статьи — изучение нефтеотдающих свойств пород Балтийской нефтеносной области, их взаимосвязи с емкостными свойствами, параметрами порового пространства пород-коллекторов, образованных в различных условиях осадконакопления.

Объект исследований — керновый материал, отобранный из скважин Лижяй-1 (глубина отбора (в метрах) — 2127,6, 2128,6, нижний ордовик, пакерортский горизонт O_1 pk; 2129,7, средний кембрий, дейменаская серия C_2 dm), Ауксорас-1 (глубина отбора (в метрах) — 2187,4, нижний ордовик, пакерортский горизонт O_1 pk; 2191,4, средний кембрий, дейменаская серия C_2 dm), Жадейкяй-1 (глубина отбора (в метрах) — 2092,2, нижний ордовик, пакерортский горизонт O_1 pk), Анткоптис-1 (глубина отбора (в метрах) — 2084, нижний ордовик,

пакерортский горизонт O_1 рk; 2088,3, средний кембрий, дейменаская серия C_2 dm), Вежайчяй-11 (глубина отбора (в метрах) – 2046, 2046,8 – средний кембрий, дейменаская серия C_2 dm).

Анализ последних исследований и публикаций

Первые притоки нефти в Прибалтике были получены из верхнеордовикских пород в 1962-1965 гг. в Кибартайской, Гусевской и Кулдигской областях. Первая залежь нефти в среднекембрийских отложениях обнаружена в 1962 г. на Кулдигской площади (Латвия), а в 1968 г. получен промышленный приток нефти на Шюпаряйской площади (Литва). Более пристально изучались кембрийские отложения, промышленная нефтеносность которых доказана [Нефтяные..., 1987; Petroleum..., 2001]. Впервые экспериментальные исследования по изучению нефтеотдающих свойств пород среднекембрийского возраста были проведены в УкрНИГРИ [Нестеренко, 1990], но из-за отсутствия тогда более совершенных методических разработок [Нестеренко, 2010] совершенно неизученной оказалась структура нефтенасыщенности коллекторов, сформированных в различных геодинамических условиях.

Литолого-петрографические свойства пород

Пакерортский горизонт нижнего ордовика (O_1pk) представлен, как правило, песчаниками кварцевыми мелко-среднезернистыми с примесью крупнозернистого кварца (размер зерен — 0,51—0,65 мм), с регенерационным кварцевым, пойкиллитовым карбонатным и, в основном, контактовым и пленочным глинистым (гидрослюдистым) цементом, содержание которого составляет 5—7 % породы (рис. 1). Карбонат образует гнездообразные включения, глина — полоски и пленки на контакте между зернами, при этом заполняются узкие поры. Контактовый и пленочный цемент неравномерно распределен в породе.

94 © Н.Ю. Нестеренко, А. Клейнас, Ю.М. Вихоть, А.П. Боднарчук, В.В. Иванов, Л.В. Гаврилец, 2011

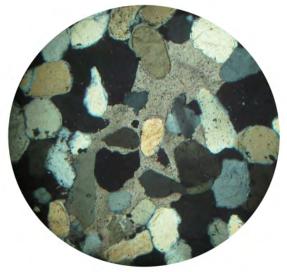


Рис. 1. Песчаник кварцевый мелко-среднезернистый с пойкилитовым карбонатным, контактовым и пленочным глинистым цементом с фрагментом коррозии зерен кварца карбонатом. Образец 1, скв. Лижяй-1, глубина – 2127,6 м. Увеличение – 63. Ник Х

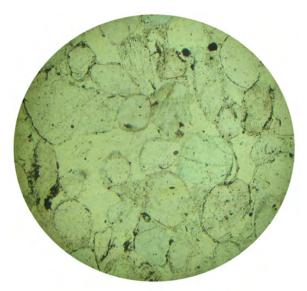


Рис. 2. Песчаник кварцевый мелко-среднезернистый с первичными межзерновыми открытыми угловатыми порами с поровыми каналами. Образец 1, скв. Лижяй-1, глубина – 2127,6 м. Увеличение – 63. Ник II

Структура псаммитовая конформнозернистая, изредка инкорпорационная. Текстура однородная. Обломочный материал представлен окатанными, изредка полуокатанно-угловатыми зернами кварца (90-95 %), зернами калиевых полевых шпатов (7–9 %), единичными табличками биотита и зернами хлорита, кристаллами акцессорного циркона. Встречаются стяжения пирита. Сортирование хорошее. Средний размер зерен – 0,24–0,32 мм.

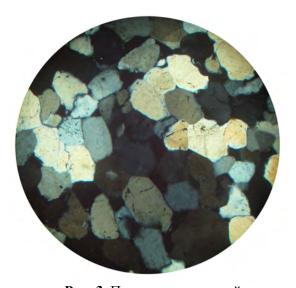


Рис. 3. Песчаник кварцевый мелко-среднезернистый с регенерационным кварцевым и контактово-поровым глинистым с незначительной примесью карбоната цементом с конформной, инкорпорационной и микростилолитовой структурой. Образец 10, скв. Вежайчяй-11, глубина – 2046,8 м. Увеличение – 63. Ник. Х

Рис. 4. Песчаник кварцевый мелко-среднезернистый с первичными межзерновыми открытыми угловатыми порами. Образец 10, скв. Вежайчяй-11, глубина – 2046,8 м. Увеличение – 63. Ник. II

Вторичные преобразования минералов – коррозия гидрослюдой и карбонатом зерен кварца (см. рис. 1). Вторичные линейные и вогнутые контакты между зернами кварца и полевого шпата, изредка регенерация зерен кварца.

Поровое пространство составляет приблизительно 15 % породы и образовано первичными межзерновыми открытыми порами с поровыми каналами. Поры в основном угловатые со средним

размером -0.35 мм (рис. 2) и удлиненные (0,23 мм). Раскрытие поровых каналов -0.02-0.03 мм. Наблюдается довольно равномерное распределение пор по размерам.

Вышеописанные породы образовались в условиях морского шельфа.

Дейменаская серия среднего кембрия (C_2 dm) представлена, как правило, песчаниками кварцевыми мелко-среднезернистыми с регенерационным кварцевым и контактово-поровым глинистым (гидрослюдистым) цементом и незначительной (2–3 %) примесью карбоната (рис. 3). Глинистый материал довольно равномерно распределен в породе и образует тонкие полоски в межзерновом пространстве. Наблюдается повсеместное распространение регенерационного кварцевого цемента. Содержание цемента в породе приблизительно 5 %. Структура псаммитовая конформная, инкорпорационная, изредка микростилолитовая (см. рис. 3).

Вдоль микростилолитовой поверхности иногда присутствуют пленки, которые являются остатками глинистого материала. Текстура однородная. Обломочный материал представлен окатанными, полуокатанно-угловатыми зернами кварца (90–95 %), зернами калиевых полевых шпатов и плагиоклаза (5–7 %), обломками изверженных горных пород, кристаллами циркона. Сортирование хорошее. Средний размер зерен — 0,21—0,28 мм. Иногда встречаются мелкие, размером 0,03—0,05 мм, пятна светло-коричневого битума.

Вторичные преобразования минералов – регенерация и коррозия гидрослюдой зерен кварца, пелитизация полевых шпатов, вторичные линейные и выпукло-вогнутые контакты между зернами кварца, между зернами кварца и полевого шпата, микростилолитовые швы.

Поровое пространство составляет 8-10 % породы и образовано первичными межзерновыми открытыми порами, изолированными и с поровыми каналами (рис. 4). Поры в основном угловатые со средним размером 0,14 мм, также удлиненные (размер 0,13 мм) и округлые (размер 0,08 мм). Раскрытие поровых каналов — 0,01—0,02 мм. Иногда встречаются внутриобломочные трещинки с раскрытием меньше 0,01 мм. Распределение пор в породе неравномерное.

Породы образовались в прибрежно-морских условиях.

Согласно результатам гранулометрического анализа содержание пелитовой фракции в породах нижнеордовикского и среднекембрийского возраста незначительное и составляет 1,1–4,4 %, а содержание карбоната колеблется от 2,4 до 9,9 %.

Методика экспериментальных исследований

Методические вопросы проведения лабораторных работ регламентированы в нормативных документах [ГОСТ 26450.0-85, 1985; ГОСТ 26450.1-85, 1985; ГОСТ 26450.2-85, 1985; ГСТУ 41-00032626-00-025-2000, 2001; ГСТУ 41-31-2002, 2002; СОУ 73.1-41-08.11.09:2007, 2007], а также описаны в монографии [Нестеренко, 2010].

Из отобранного на исследования керна вырезали цилиндрические образцы диаметром 3 см и длиной 3 см. Затем их подвергали холодной промывке в спирто-бензольной смеси с целью сохранения их первоначальной смачиваемости. После отмывания образцов от солей в дистилированной воде и высушивания при 105° С на них измеряли абсолютную газопроницаемость и определяли проницаемость с учетом проскальзывания газа (эффект Клинкенберга) [ГОСТ 26450.2-85, 1985].

В кернодержателях фильтрационной установки на образцы создавали эффективное давление, которое соответствовало естественным условиям залегания пород (26–29 МПа).

Затем образцы повторно высушивали до постоянной массы, взвешивали и насыщали под вакуумом моделью пластовой воды с минерализацией по NaCl для скважин соответственно: Лижяй-1, Ауксорас-1 – 182,582 г/л; Жадейкяй-1 –162,748 г/л; Анткоптис-1 – 193,788 г/л; Вежайчяй-11–102,186 г/л и определяли открытую пористость по воде.

Проведение капилляриметрических исследований осуществлялось в две стадии с использованием центробежного метода [ГСТУ 41-00032626-00-025-2000, 2001].

На первой стадии проводили ступенчатое вытеснение из образцов пластовой воды при различном давлении вытеснения. По результатам текущих определений значений водонасыщения $(K_{\rm BR})$ от давления вытеснения (p) строили зависимость $K_{\rm BR}=f(p)$, из которой по неснижающемуся или характерному значению водонасыщенности определяли остаточную водонасыщенность пород $K_{\rm OB}$, а также эффективную пористость $K_{\rm III}$ и параметры порового пространства [COV 73.1–41–08.11.09:2007, 2007].

На второй стадии образцы с остаточной водой под вакуумом донасыщали керосином и на них проводилось ступенчатое вытеснение керосина $K_{\rm Hn}$ при различном давлении вытеснения (р), строилась зависимость керосинонасыщенности пород $K_{\rm Hn}$ от р, ($K_{\rm Hn}$ =f(p)), на основании которой определяли параметры структуры нефтенасыщенности пород [ГСТУ 41-31-2002, 2002] и динамическая пористость $K_{\rm ng}$.

В качестве углеводородной жидкости выбран очищенный керосин, поскольку его вязкость в поверхностных условиях близка к вязкости нефти из скважины Ауксорас-1 в пластовых условиях (2,5 мПа·с). При этом соблюдается уравнение аддитивной вязкости смеси.

Образцы после завершения второй стадии исследований повторно подвергали холодной промывке в спирто-бензольной смеси, насыщали керосином, затем определяли открытую пористость по керосину.

Пользуясь полученными кривыми капиллярного давления (ККД), общий объем порового пространства пород-коллекторов [СОУ 73.1–41–08.11.09:2007, 2007] разделен на составляющие:

$$K_a + K_{\Delta p} + K_3 = 1$$
,

где K_a – доля сверхкапиллярных поровых каналов; $K_{\Delta p}$ – доля капиллярных пор; K_3 – доля субкапиллярных пор.

Кроме того, нами были рассчитаны параметры неоднородности: эффективный P (отношение доли объема капиллярных пор к сверхкапиллярным, $P = K_{\Delta p}/K_a$) и общий P_{Σ} (отношение суммарной доли объема капиллярных пор и субкапиллярных к сверхкапиллярным, $P = (K_{\Delta p} + K_3)/K_a$).

Под сверхкапиллярными поровыми каналами K_a подразумевается доля порового объема, занятого порами, из которых вытеснение флюидов происходит без влияния капиллярных сил (поршневое вытеснение).

Капиллярные поры $K_{\Delta p}$ – доля порового объема, занятого поровыми каналами, эффективность вытеснения флюидов из которых зависит от соотношения гидродинамических и капиллярных сил и характера смачивания поровой поверхности.

Субкапиллярные поры K_3 — это доля объема, который занимают нефильтрующие поры, которые, как правило, заполнены остаточной водой.

C этих позиций эффективную пористость $K_{\rm пэ}$ следует рассматривать как $K_{\rm пэ} = K_{\rm n} (1 - K_{\rm 3})$, а динамическую пористость $(K_{\rm nд})$ – как $K_{\rm nд} = K_{\rm n} \times (1 - K_{\rm 3} - K_{\Delta p})$.

Структуру нефтенасыщенности коллекторов изучали согласно [ГСТУ 41-31-2002, 2002], при этом проводилось количественное определение

нефти в свободном, пленочном и адсорбированном состояниях. Для нефтяных месторождений коэффициент вытеснения нефти водой следует рассматривать как $\beta_{\text{в}}$ = $K_{\text{п,д}}/K_{\text{п,э}}$ [Нестеренко, 2010].

Фильтрационно-емкостные свойства пород

Изучены следующие фильтрационно-емкостные свойства: абсолютная газопроницаемость, проницаемость по жидкости (с учетом эффекта Клинкенберга) в пластовых условиях; открытая, эффективная и динамическая пористости пород; остаточная водонасыщенность методом центрифугирования с получением кривых капиллярного давления.

Результаты капилляриметрических исследований в двух различных системах фаз методом центрифугирования послужили основой для определения коэффициента остаточного водонасыщения, начального нефтенасыщения, эффективной и динамической пористости коллекторов (табл. 2).

Фильтрационно-емкостные свойства изученных пород

Таблица 1

		Глубина отбора, м	Возраст пород	Коэф	фициент	Открытая пористость, %				
	Месторож дение, № скважины			газопрон	ницаемости					
Лабора торный № образца				Кпр в п	ластовых	в поверх	в плас-			
				-	овиях,	в поверх	товых			
				1.1	0^{-15}m^2		усло-			
					с учётом	методом К _{пг}	насы	насы щением водой $K_{\text{пв}}$	виях	
					эффекта		щением керосином		(по	
					Клинкен				воде)	
					берга К _{пр} [∞]		$K_{n\kappa}$		$K_{\text{пв.пл.}}$	
					_ 1					
1	Лижяй-1	2127,6	O_1pk	169,4	66,1	13,2	13,4	13,6	13,3	
2	-//-	2128,6	O_1pk	190,6	80,1	13,2	12,2	11,9	11,6	
3*	-//-	2129,7	ϵ_2 dm	2,0	0,1	5,0	3,9	4,4	4,1	
4	Ауксорас-1	2187,4	O_1pk	71,9	22,6	8,9	7,8	7,5	7,2	
5	-//-	2191,4	ϵ_2 dm	0,06	0,001	6,0	-	_	-	
6	Жадейкяй-1	2092,2	O_1pk	114,1	42,2	9,6	-	_	-	
7	Анткоптис-1	2084	O_1pk	40,5	10,1	7,7	6,8	6,8	6,5	
8	-//-	2088,3	ϵ_2 dm	7,0	0,8	7,4	7,3	6,7	6,4	
9	Вежайчяй-11	2046,0	ϵ_2 dm	2,1	0,2	8,0	8,1	7,4	7,1	
10	-//-	2046,8	ϵ_2 dm	12,2	2,0	8,7	8,2	7,8	7,5	

^{*}Трещиноватый образец

Таблица 2

Емкостные свойства изученных пород

Лабора		Глубина отбора, м		Остаточная		Пористость, %			
торный № образца	месторож		Rosnact	водонасыщен ность K_{ob} , % в поверхностных условиях	Нефтенасы- щенность К _н , %	открытая $K_{\text{пв}}$	эффектив ная $K_{пэ}$	динами- ческая К _{пд}	
1	Лижяй-1	2127,6	O_1pk	9	91	13,6	12,4	9,5	
2	- // -	2128,6	O_1pk	9	91	11,9	10,8	8,3	
3*	- // -	2129,7	ϵ_2 dm	72	28	4,4	1,2	0	
4	Ауксорас-1	2187,4	O_1pk	15	85	7,5	6,4	4,8	
7	Анткоптис-1	2084	O_1pk	12	88	6,8	6,0	4,1	
8	- // -	2088,3	ϵ_2 dm	30	70	6,7	4,7	2,7	
9	Вежайчяй-11	2046,0	ϵ_2 dm	32	68	7,4	5,0	2,6	
10	- // -	2046,8	ϵ_2 dm	32	68	7,8	5,3	2,4	

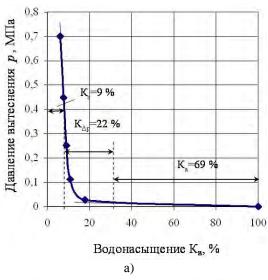
^{*}Трещиноватый образец

 Таблица 3

 Распределение и процентное содержание поровых каналов в изученных породах

Глубина отбора, м	Процентно	е солеруе	пие пор	Раци	VC HOD r M	Параметр					
	процентне	е содсржа	інис пор	т ади	yc nop 7, M	adadare	общий				
	сверхка	капил-	субка-	сверхка-	капил- лярных	Субка-	тивный	P_{Σ}			
	пиллярных	лярных	пилляр-	пиллярных		пилляр-					
	K_a	$K_{\Delta p}$	ных K_3	K_a	$K_{\Delta p}$	ных К ₃	1				
Лижяй-1											
2127,6	127,6 69 22		9	>8,6	0,4-8,6	<0,4	3,14	0,45			
2128,6	61	30	9	>9,7	0,4-9,7	<0,4	2,03	0,64			
2129,7	8 20		72	>4,9	0,4-4,9	<0,4	0,40	11,50			
Ауксорас-1											
2187,4 58 27		27	15	>7,0	0,3-7,0	<0,3	2,15	0,72			
Анткоптис-1											
2084	52	36	12	>9,7	0,3-9,7	<0,3	1,44	0,92			
2088,3 42 28		30	>1,8	0,3-1,8	<0,3	1,50	1,38				
Вежайчяй-11											
2046,0	30	38	32	>2,1	0,3-2,1	<0,3	0,79	2,33			
2046,8	27	41	32	>5,4	0,3-5,4	<0,3	0,66	2,70			
	2127,6 2128,6 2129,7 2187,4 2084 2088,3	1 луоина отбора, м сверхка пиллярных Ка 2127,6 69 2128,6 61 2129,7 8 2084 52 2088,3 42 2046,0 30	1 луоина отбора, м сверхка пиллярных Ка капиллярных Каррина 2127,6 69 22 2128,6 61 30 2129,7 8 20 2187,4 58 27 2084 52 36 2088,3 42 28 2046,0 30 38	отбора, K_a сверхка капил- пиллярных K_a лярных пиллярных $K_{\Delta p}$ ных K_3 Лижя $\frac{2127,6}{2128,6}$ 69 22 9 $\frac{2128,6}{61}$ 30 9 $\frac{2129,7}{8}$ 8 20 $\frac{72}{2187,4}$ 58 27 $\frac{2187,4}{58}$ 58 27 $\frac{2187,4}{58}$ 58 27 $\frac{2187,4}{58}$ 58 27 $\frac{2187,4}{58}$ 58 27 $\frac{2084}{52}$ 36 $\frac{12}{2088,3}$ 42 28 30 $\frac{2084}{2088,3}$ 42 28 30 $\frac{2084}{2046,0}$ 30 38 32	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 луоина отбора, мсверхка пиллярных какапил- пиллярных к $K_{\rm Ap}$ сверхка- пилляр- пиллярных к $K_{\rm Ap}$ капил- лярных к $K_{\rm Ap}$ 2127,669229>8,60,4-8,62128,661309>9,70,4-9,72129,782072>4,90,4-4,9Ауксорас-12187,4582715>7,00,3-7,0Анткоптис-12084523612>9,70,3-9,72088,3422830>1,80,3-1,8Вежайчяй-112046,0303832>2,10,3-2,1	Плуоина отбора, мсверхка пиллярных K_a капил- лярных $K_{\Delta p}$ субка- пилляр- ных K_3 сверхка- пиллярных K_a капил- лярных $K_{\Delta p}$ Субка- пилляр- ных K_3 2127,669229>8,60,4-8,6<0,4	Процентное содержание пор Радиус пор r , мкм отбора, r сверхка пиллярных лярных пиллярных r			

^{*}Трещиноватый образец


Для пород, вскрытых скважинами Лижяй-1, Ауксорас-1, Анткоптис-1 и Вежайчяй-11, характерна остаточная водонасыщенность в пределах 9–32 %, только образец из скважины Лижяй-1 характеризуется значительной водонасыщенностью – 72 % (отмечены продольные трещины) и его матрица не является коллектором. При этом эффективная пористость изменяется от 1,2 до 12,4 %, а динамическая – от нуля до 9,5 %.

Особенности структуры порового пространства

Следует подчеркнуть, что содержание субкапиллярных пор (заполненных остаточной водой) составляет 9–32 % (табл. 3). В зависимости от фильтрационных свойств пород изменяется процентное содержание и радиус поровых каналов. При этом процентное содержание сверхкапиллярных пор изменяется от 8 до 69 %, капиллярных - от 20 до 41 %, субкапиллярных - от 9 до 72 %. Соответственно радиус поровых каналов изменяется: для сверхкапиллярных пор - 1,8-9,7 мкм и более, капиллярных - 0,3-9,7 мкм, субкапиллярных - менее 0,3-0,4 мкм. Параметр неоднородности эффективный изменяется от 0,4 до 3,14, общий – от 0,45 до 11,5. Наихудшей неоднородностью обладают породы с низкими фильтрационными свойствами: коэффициентом проницаемости 0.1×10^{-15} м² (параметр неоднородности эффективный имеет самое минимальное значение -0.4, а общий – самое максимальное значение 11.5). Такие породы характеризуются низким содержанием сверхкапиллярных пор (8 %), процентное содержание капиллярных пор находится на уровне 20 %, а субкапиллярных - 72 %. При таком распределении поровых каналов фильтрация нефти из пород невозможна, поскольку субкапиллярные поры заполнены остаточной водой, а в сверхкапиллярных и капиллярных порах нефть будет находиться в фазовонеподвижном состоянии. Для пород проницаемостью K_{np}^{∞} = $(0.2-80.1)\times10^{-15}$ м² параметр неоднородности эффективный соответственно варьирует в пределах 0.66-3.14, а общий -0.45-2.7.

Для пород, сформированных в различных условиях осадконакопления (морской шельф, образец № 1; прибрежно-морские, образец № 10) параметры порового пространства пород существенно отличаются (рис. 5, 6).

Процентное содержание сверхкапиллярных пор в породах, сформированных в условиях морского шельфа более чем в 2,5 раза выше по сравнению с породами, сформированными в прибрежно-морских условиях. Соотношение капиллярных и субкапиллярных пор также отличается. Содержание капиллярных пор занижено более, чем в 1,8 раза, субкапиллярных — в 3,5 раза, что естественно будет сказываться на конечных показателях нефтеизвлечения.

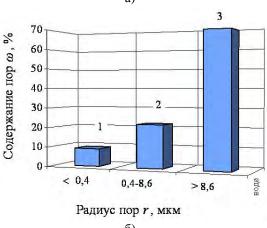
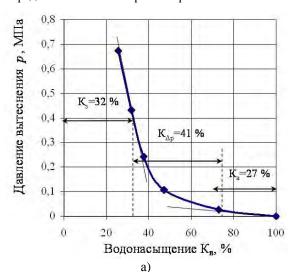



Рис. 5. Типичные кривые капиллярного давления (а) и параметры порового пространства (б) для пород-коллекторов, образованных в условиях морского шельфа (образец № 1 из скв. Лижяй-1) (содержание пор: 1 – субкапиллярных; 2 – капиллярных; 3 – сверхкапиллярных)

Результаты количественного определения параметров структуры нефтенасыщенности пород сведены в таблице 4, их типичные диаграммы представлены на рисунках 7 и 8.

Анализ изменения нефтеотдающих свойств изученных пород-коллекторов (рис. 9) указывает на довольно широкие пределы их изменения в зависимости от емкостных свойств. Коэффициент вытеснения нефти водой за безводный период изменяется от 0,34 до 0,67, а максимально возможный при условии внедрения вторичных методов повышения нефтеотдачи пластов – от 0,46 до 0,77. При этом следует подчеркнуть, что свободноподвижная нефть является составляющей коэффициента вытеснения нефти за безводный период и сосредоточена в сверхкапиллярных поровых каналах. Пленочная нефть является составляющей максимально возможного коэффициента вытеснения нефти при условии внедрения вторичных методов повышения нефтеотдачи и сосредоточена в капиллярных поровых каналах.

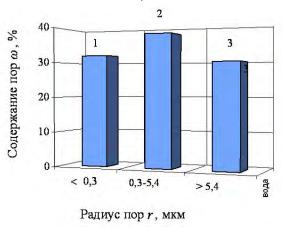


Рис. 6. Типичные кривые капиллярного давления (а) и параметры порового пространства (б) для пород-коллекторов, образованных в прибрежно-морских условиях осадконакопления (образец № 10 из скв. Вежайчяй - 11) (содержание пор: 1 — субкапиллярных; 2 — капиллярных; 3 — сверхкапиллярных)

б)

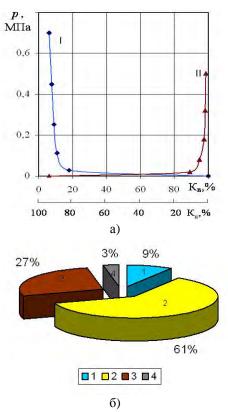


Рис. 7. Типичные кривые капиллярного давления (а) и структура нефтенасыщенности (б) для пород-коллекторов, образованных в условиях морского шельфа (образец № 1, скв. Лижяй-1)

(1 – остаточная вода; 2 – свободноподвижная нефть; 3 – плёночная нефть; 4 – адсорбированная нефть; I – образец с моделью пластовой воды; II – образец с остаточной водой

п – ооразец с остаточнои водог и донасыщен керосином)

Нефтеотдающие свойства пород

Площадь, ограниченная кривыми 1 и 2 (рис. 9), является резервом дополнительного извлечение нефти. Из графика также следует, что при значении открытой пористости 4,4 % и остаточной водонасыщенности около 70 % изученные породы не могут быть коллекторами нефти, поскольку коэффициент вытеснения близок к нолю (произведение $K_{\rm II} \times K_{\rm H} = 0,03$).

Нефтеотдающие свойства пород-коллекторов, сформированных в условиях морского шельфа и в прибрежно-морских условиях, существенно отличаются (см. рис. 7, 8). Доля свободноподвижной нефти соответственно выше в 2,6 раза, пленочной – практически не отличается (27–28 %), а адсорбированной – существенно ниже (3 % против 17 %) относительно общего объема пор. При этом нефтенасыщенность пород тоже отличается – 91 % против 68 %.

Выводы

Анализ результатов лабораторных исследований образцов керна по разрезам скважин Лижяй-1, Ауксорас-1, Жадейкяй-1, Анткоптис-1, Вежайчяй-11 позволяет сделать следующие выводы:

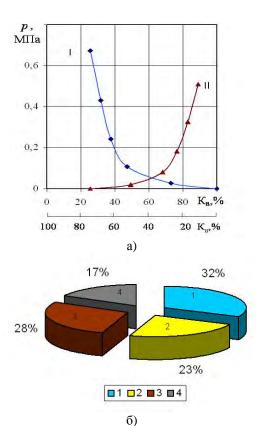
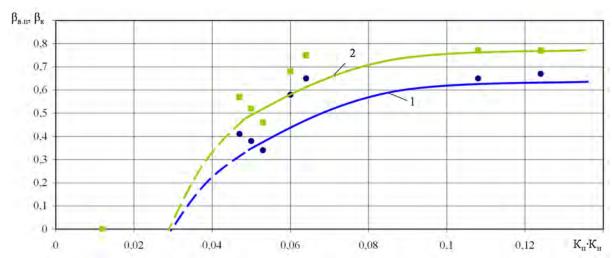


Рис. 8. Кривые капиллярного давления (а) и структура нефтенасыщенности (б) для пород-коллекторов, образованных в прибрежно-морских условиях осадконакопления (образец № 10, св. Вежайчяй-11) (условные обозначения, как на рис. 7)


- 1. Согласно результатам литолого-петрографических исследований, породы-коллекторы из скв. Лижяй-1 (2129,7 м), Вежайчяй-11(2046,8 м) образовались в прибрежно-морских условиях, а из скв. Лижяй-1 (2127,6 м) в условиях морского шельфа.
- 2. Матрица пород характеризуется довольно высокими фильтрационно-емкостными свойствами (ФЕС): проницаемость (с учётом эффекта Клинкенберга) изменяется от 0.1×10^{-15} м² до 80.1×10^{-15} м², открытая пористость от 4.1 до 13.3 %. Из-за недостаточного объема выборки не удалось установить корреляционные зависимости и даже выявить тенденции изменения ФЕС.
- 3. Структура нефтенасыщенности по отношению к объему эффективных пор, что соответствует пластовым условиям, в зависимости от проницаемости пород выглядит следующим образом: свободноподвижная нефть 34-67 %, пленочная нефть 30-41 %, адсорбированная нефть— 2-30 %. Коэффициенты вытеснения нефти водой за безводный период составляют 0,34-0,67, а максимально возможные (с внедрением вторичных методов повышения нефтеотдачи) при заводнении 0,46-0,77. Это, в конечном итоге, в дальнейшем при подтверждении позволит дифференцировать запасы нефти по степени подвижности на активные, трудноизвлекаемые и остаточные.

			1 ' '	1 2	<i>J</i> 1	1				•		
		лубинаотбора, м	свободно-						Коэффициент вытеснени			нения,
ĬĬ	ие				плёночная нефть		адсорбирован- ная нефть		доли ед.			
ЭНБ Пда	ини								безводный		максимально	
TOF	Лабораторный № образца Месторождение № скважины		нефть по отношению		по отношению к объёму пор		по отношению к объёму пор		период $\beta_{6.\pi}$ по отношению		возможный β_{κ} по отношению	
pa o6												
30g Se	ecto Ne c	и9	к объёму пор						к объёму пор		к объёму пор	
П	Me J	yr.	откры	эффек-	откры-	эффек-	откры	эффек-	откры	эффек-	откры	эффек-
		Ι	тых	тивных	тых	тивных	тых	тивных	тых	тивных	тых	тивных
1	Лижяй-1	2127,6	61	67	27	30	3	3	0,61	0,67	0,70	0,77
2	-//-	2128,6	59	65	30	33	2	2	0,59	0,65	0,70	0,77
4	Ауксорас-1	2187,4	55	65	27	32	3	3	0,55	0,65	0,64	0,75
7	Анткоптис-1	2084	51	58	32	36	5	6	0,51	0,58	0,60	0,68
8	-//-	2088,3	29	42	24	34	17	24	0,29	0,41	0,40	0,57
9	Вежайчяй-11	2046,0	26	38	22	32	20	30	0,26	0,38	0,35	0,52
10	- // -	2046,8	23	34	28	41	17	25	0,23	0,34	0,31	0,46

Таблица 4 Распределение структуры нефтенасыщенности* пород-коллекторов

*Структура нефтенасыщенности и коэффициент вытеснения в пластовых условиях будет соответствовать распределению составляющих нефтенасыщенности относительно эффективного объема пор (цифры в таблице выделены темным цветом).

Рис. 9. Тенденция изменения коэффициента вытеснения нефти за безводный период (1) и максимально возможного при заводнении (2) в зависимости от емкостных свойств породколлекторов (произведение открытой пористости на нефтенасыщенность)

4. На основание сведений о нефтенасыщенности и открытой пористости пород, полученных по данным ГИС и с учетом результатов данного исследования в первом приближении можно прогнозировать структуру нефтенасыщенности коллекторов.

Литература

ГОСТ 26450.0-85. Породы горные. Общие требования к отбору и подготовке проб для определения коллекторских свойств. — М.: Изд-во стандартов. — 1985. — 12 с.

ГОСТ 26450.1-85. Породы горные. Метод определения коэффициента открытой пористости жидкостенасыщением. — М.: Изд-во стандартов. — 1985. — 8 с.

ГОСТ 26450.2-85. Породы горные. Метод определения коэффициента абсолютной газопроницаемос-

ти при стационарной и нестационарной фильтрации. – М.: Изд-во стандартов. – 1985. – 16 с.

ГСТУ 41-00032626-00-025-2000. Коефіцієнт залишкового водонасичення гірських порід. Методика виконання вимірювань методом центрифугування зразків. — К.: Мінекоресурсів України. — 2001. — 19 с.

ГСТУ 41-31-2002. Визначення параметрів структури нафтонасичення порід-колекторів методом центрифугування зразків. — К.: Мінекоресурсів України. — 2002. — 20 с.

СОУ 73.1–41–08.11.09:2007. Визначення параметрів порового простору порід–колекторів. Методичні вказівки. – К.: Держгеолслужба. – 2007. – 13 с.

Нестеренко Н.Ю. Методы комплексного исследования фильтрационно-емкостных свойств терригенных коллекторов нефтяных месторож-

дений: Автореф. дисс.... канд. геол.-мин. наук – Львов: ИГГГК АН УССР. – 1990. – 16 с. Нестеренко М.Ю. Петрофізичні основи обгрунтування флюїдонасичення порід-колекторів. – К.: УкрДГРІ, 2010. – 224 с.

Нефтяные месторождения Прибалтики / Под ред. Г.Б. Восилюса. – Вильнюс: Мокслас, 1987. – 146 с. Petroleum Geology of Lithuania and Southeastern Baltic / Ed. by O. Zdanaviciute and K. Sakalauskas. – Vilnius: GI, 2001. – 204 р.

ЛІТОЛОГО-ПЕТРОФІЗИЧНІ І НАФТОВІДДАВАЛЬНІ ВЛАСТИВОСТІ ПОРІД-КОЛЕКТОРІВ ПАКЕРОРТСЬКОГО ГОРИЗОНТУ І ДЕЙМЕНАСЬКОЇ СЕРІЇ БАЛТІЙСЬКОЇ НАФТОНОСНОЇ ОБЛАСТІ

М.Ю. Нестеренко, А. Клейнас, Ю.М. Віхоть, Г.П. Боднарчук, В.В. Іванов, Л.В. Гаврилець

За результатами літолого-петрографічних досліджень породи-колектори, розкриті свердловинами Ліжяй-1 (2129,7 м), Вежайчяй-11 (2046,8 м), утворились у прибережно-морських умовах, а розкриті свердловиною Ліжяй-1 (2127,6 м) — в умовах морського шельфу. Матриця порід характеризується доволі високими фільтраційно-ємнісними властивостями: проникність (з урахуванням ефекту Клінкенберга) змінюється від 0.1×10^{-15} м² до 80.1×10^{-15} м², відкрита пористість — від 4,1 до 13,3 %.

Експериментально встановлено, що стосовно об'єму ефективних пор, залежно від проникності порід, структура нафтонасичення виглядає так: вільнорухома нафта -34–67 %, плівкова нафта -30–41 %, адсорбована нафта -2–30 %. Коефіцієнт витіснення нафти водою за безводний період становить 0,34–0,67, а максимально можливий (після впровадження вторинних методів підвищення нафтовилучення) після заводнення -0,46–0,77.

Ключові слова: порода-колектор; відкрита, ефективна та динамічна пористості; структура нафтонасичення; коефіцієнт витіснення нафти.

LITHOLOGIC, PETROPHYSICAL AND OIL RECOVERY PROPERTIES OF RESERVOIR ROCKS IN PAKERORT HORIZON AND DEYMENASK SERIES OF THE BALTIC SEA OIL AREA

M.Yu. Nesterenko, A. Kleinas, Yu.M. Vikhot, A.B. Bodnarchuk, V.V. Ivanov, L.V. Havrylets

According to the results of litho-petrographic investigations the rock reservoirs discovered by Lyzhiay-1 (2129 m), Vezhaiciay-11 (2046,8 m) boreholes were formed under the coastal-marine conditions, and discovered by the Lyzhiay-1 (2127,6 m) borehole they were formed under the sea shelf conditions. Matrix of the rocks is characterized by high reservoir properties: permeability (taking into consideration the Klinkenberg effect) changes from 0.1×10^{-15} m² to 80.1×10^{-15} m² and open porosity changes from 4.1 to 13.3%.

The experiment has shown that in relation to the volume of effective pores and depending on the level of rock permeability, the structure of oil saturation is the following: free oil -34–67 %, film oil -30–41 %, absorbed oil -2–30 %. The coefficient of water-oil displacement during waterless period is 0,34–0,67 and the maximum coefficient with the usage of secondary oil recovery enhancement methods during watering is 0,46–0,77.

Key words: reservoir-rock; open, effective and dynamic porosity; oil saturation structure; oil displacement coefficient.

Надійшла 18.04.2011

Центре изучения природы, г. Вильнюс, Литва

¹Львовское отделение УкрГГРИ, г. Львов, Украина

²3AO "Manifoldas", г. Гаргждай; Институт геологии и географии при

³Институт геофизики им. С.И. Субботина НАН Украины, г. Киев, Украина