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SPECTRAL GAPS OF THE ONE-DIMENSIONAL SCHRÖDINGER

OPERATORS WITH SINGULAR PERIODIC POTENTIALS

VLADIMIR MIKHAILETS AND VOLODYMYR MOLYBOGA

To the memory of A. Ya. Povzner

Abstract. The behavior of the lengths of spectral gaps {γn(q)}∞
n=1 of the Hill-

Schrödinger operators

S(q)u = −u′′ + q(x)u, u ∈ Dom (S(q)) ,

with real-valued 1-periodic distributional potentials q(x) ∈ H−1
1-per(�) is studied. We

show that they exhibit the same behavior as the Fourier coefficients {�q(n)}∞
n=−∞

of

the potentials q(x) with respect to the weighted sequence spaces hs,ϕ, s > −1,
ϕ ∈ SV. The case q(x) ∈ L2

1-per(�), s ∈ �+, ϕ ≡ 1, corresponds to the Marchenko-

Ostrovskii Theorem.

1. Introduction

The Hill-Schrödinger operators

S(q)u := −u′′ + q(x)u, u ∈ Dom(S(q))

with real-valued 1-periodic distributional potentials q(x) ∈ H−1
1-per(R) are well defined on

the Hilbert space L2(R) in the following equivalent basic ways [21]:

• as form-sum operators;
• as quasi-differential operators;
• as limits of operators with smooth 1-periodic potentials in the norm resolvent

sense.

The operators S(q) are lower semibounded and self-adjoint on the Hilbert space L2(R).
Their spectra are absolutely continuous and have a band and gap structure as in the
classical case of L2

1-per(R)-potentials [9, 13, 4, 21].
The object of our investigation is the behavior of the lengths of spectral gaps. Under

the assumption that

(1) q(x) =
∑

k∈Z

q̂(k)eik2πx ∈ H−1+
1-per(R, R),

that is, ∑

k∈Z

(1 + 2|k|)2s|q̂(k)|2 < ∞ ∀s > −1, and Im q(x) = 0,

we will prove many terms asymptotic estimates for the lengths {γn(q)}∞n=1 and midpoints
{τn(q)}∞n=1 of spectral gaps of the Hill-Schrödinger operators S(q) (Theorem 1). These
estimates enable us to establish a relationship between the rate of decreasing/increasing

of the lengths of the spectral gaps and the regularity of the singular potentials (Theorem 2
and Theorem 3).
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It is well known that if the potentials satisfy

q(x) =
∑

k∈Z

q̂(k)eik2πx ∈ L2
1-per(R, R), Im q(x) = 0,

i.e., if ∑

k∈Z

|q̂(k)|2 < ∞ and q̂(k) = q̂(−k) ∀k ∈ Z,

then the Hill-Schrödinger operators S(q) are lower semibounded and self-adjoint on the
Hilbert space L2(R) with absolutely continuous spectra that have a zone structure [5, 28].

The spectra spec (S(q)) are defined by the location of the endpoints {λ0(q), λ
±
n (q)}∞n=1

of the spectral gaps, and the endpoints satisfy the following inequalities:

−∞ < λ0(q) < λ−
1 (q) ≤ λ+

1 (q) < λ−
2 (q) ≤ λ+

2 (q) < · · · .

Moreover, for even/odd numbers n ∈ Z+, the endpoints of the spectral gaps are eigen-
values of the periodic/semiperiodic problems on the interval [0, 1],

S±(q)u := −u′′ + q(x)u = λu,

Dom(S±(q)) :=
{

u ∈ H2[0, 1]
∣∣∣u(j)(0) = ± u(j)(1), j = 0, 1

}
≡ H2

±[0, 1].

The spectral bands (stability or tied zones),

B0(q) := [λ0(q), λ
−
1 (q)], Bn(q) := [λ+

n (q), λ−
n+1(q)], n ∈ N,

are characterized as a locus of those real λ ∈ R for which all solutions of the equation
S(q)u = λu are bounded. On the other hand, the spectral gaps (instability or forbidden
zones),

G0(q) := (−∞, λ0(q)), Gn(q) := (λ−
n (q), λ+

n (q)), n ∈ N,

are a locus of those real λ ∈ R for which any nontrivial solution of the equation S(q)u =
λu is unbounded.

Due to Marchenko and Ostrovskii [14], the endpoints of spectral gaps of the Hill-
Schrödinger operators S(q) satisfy the asymptotic estimates

(2) λ±
n (q) = n2π2 + q̂(0) ± |q̂(n)| + h1(n), n → ∞.

As a consequence, for the lengths of spectral gaps,

γn(q) := λ+
n − λ−

n , n ∈ N,

the following asymptotic formulae hold:

(3) γn(q) = 2 |q̂(n)| + h1(n), n → ∞.

Hochstadt [10] (⇒) and Marchenko, Ostrovskii [14], McKean, Trubowitz [15] (⇐)
proved that the potential q(x) is an infinitely differentiable function if and only if the
lengths of spectral gaps {γn(q)}∞n=1 decrease faster than an arbitrary power of 1/n,

q(x) ∈ C∞
1-per(R, R) ⇔ γn(q) = O(n−k), n → ∞ ∀k ∈ Z+.

Marchenko and Ostrovskii [14] discovered that

(4) q(x) ∈ Hk
1-per(R, R) ⇔ {γn(q)}∞n=1 ∈ hk, k ∈ Z+.

The relationship (4) was extended by Kappeler, Mityagin [11] (⇒) and Djakov, Mitya-
gin [2] (⇐) (see also the survey [3] and the references therein) to the case of symmetric,
monotone, submultiplicative and subexponential weights Ω = {Ω(n)}n∈Z

,

q(x) ∈ HΩ
1-per(R, R) ⇔ {γn(q)}∞n=1 ∈ hΩ.

Pöschel [27] proved the latter statement in a quite different way.
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Here and throughout the rest of the paper we use the complex Hilbert spaces Hw
1-per(R)

(as well as Hw
± [0, 1]) of 1-periodic functions and distributions defined by means of their

Fourier coefficients

f(x) =
∑

k∈Z

f̂(k)eik2πx ∈ Hw
1-per(R) ⇔

{
f̂(k)

}

k∈Z

∈ hw,

hw =

{
a = {a(k)}k∈Z

∣∣∣∣ ‖a‖hw =

( ∑

k∈Z

w2(k)|a(k)|2
)1/2

< ∞

}
.

Basically we use the power weights

ws = {ws(k)}k∈Z
: ws(k) := (1 + 2|k|)s, s ∈ R.

The corresponding spaces we denote by

Hws

1-per(R) ≡ Hs
1-per(R), Hws

± [0, 1] ≡ Hs
±[0, 1], and hws ≡ hs, s ∈ R.

For more details, see Appendix.

2. Main results

As we have already remarked, if assumption (1) is satisfied, the Hill-Schrödinger op-
erators S(q) are lower semibounded and self-adjoint on the Hilbert space L2(R). Their
spectra are absolutely continuous and have a classical zone structure [9, 13, 4, 21, 23].

Using the results of the papers [12, 26], the Isospectral Theorem 5, and [21, Theorem C]
we obtain uniform many terms asymptotic estimates for the lengths of spectral gaps,
{γn(q)}∞n=1, and for their midpoints {τn(q)}∞n=1,

τn(q) :=
λ+

n (q) + λ−
n (q)

2
, n ∈ N.

Theorem 1. ([18, 25]). Let q(x) ∈ H−α
1-per(R, R), α ∈ [0, 1). Then for any ε > 0,

uniformly on bounded sets of distributions q(x) in the corresponding Sobolev spaces

H−α
1-per(R), the lengths {γn(q)}∞n=1 and the midpoints {τn(q)}∞n=1 of spectral gaps of the

Hill-Schrödinger operators S(q) for n ≥ n0

(
‖q‖H−α

1-per
(R)

)
satisfy the following asymp-

totic formulae:

γn(q) = 2 |q̂(n)| + h1−2α−ε(n),(5)

τn(q) = n2π2 + q̂(0) + h1−2α−ε(n).(6)

Corollary. ([18, 25]). Let q(x) ∈ H−α
1-per(R, R) with α ∈ [0, 1). Then for any ε > 0,

uniformly in q(x), for the endpoints of spectral gaps of the Hill-Schrödinger operators

S(q) the following asymptotic estimates hold:

λ±
n (q) = n2π2 + q̂(0) ± |q̂(n)| + h1−2α−ε(n).

Now, we can describe a two-way relationship between the rate of decreasing/increasing
of the lengths of spectral gaps, {γn(q)}∞n=1, and regularity of the potentials q(x) in a
refined scale.

Let

ws,ϕ = {ws,ϕ(k)}k∈Z
: ws,ϕ(k) := (1 + 2|k|)s ϕ(|k|), s ∈ R, ϕ ∈ SV,

where ϕ is a function slowly varying at +∞ in the sense of Karamata [30]. This means
that it is a function that is positive, measurable on [a,∞), a > 0, and obeys the condition

lim
t→+∞

ϕ(λt)

ϕ(t)
= 1, λ > 0.
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For example,

ϕ(t) = (log t)r1(log log t)r2 . . . (log . . . log t)rk ∈ SV, {r1, . . . , rk} ⊂ R, k ∈ N.

The Hörmander spaces

H
ws,ϕ

1-per(R) ≡ Hs,ϕ
1-per(R) ≃ Hs,ϕ(S), S := R/2πZ,

and the weighted sequence spaces

hws,ϕ ≡ hs,ϕ

form the refined scales:

Hs+ε
1-per(R) →֒ Hs,ϕ

1-per(R) →֒ Hs−ε
1-per(R),(7)

hs+ε →֒ hs,ϕ →֒ hs−ε, s ∈ R, ε > 0, ϕ ∈ SV,(8)

which, in a general situation, were studied by Mikhailets and Murach [22].
The following statements show that the sequence {γn(q)}∞n=1 has the same behavior

as the Fourier coefficients {q̂(n)}∞n=−∞ with respect to the refined scale {hs,ϕ}s∈R,ϕ∈SV.

Theorem 2. Let q(x) ∈ H−1+
1-per(R, R). Then

q(x) ∈ Hs,ϕ
1-per (R, R) ⇔ {γn(q)}∞n=1 ∈ hs,ϕ, s ∈ (−1, 0], ϕ ∈ SV.

Note that the Hörmander spaces Hs,ϕ
1-per(R) with ϕ ≡ 1 coincide with the Sobolev

spaces,

Hs,1
1-per(R) ≡ Hs

1-per(R), and hs,1 ≡ hs, s ∈ R.

Corollary. ([18, 25]). Let q(x) ∈ H−1+
1-per(R, R), then

(9) q(x) ∈ Hs
1-per (R, R) ⇔ {γn(q)}∞n=1 ∈ hs, s ∈ (−1, 0].

Theorem 2, together with [11, Theorem 1.2], and properties (7) and (8), gives the
following extension of the Marchenko-Ostrovskii Theorem (4).

Theorem 3. Let q(x) ∈ H−1+
1-per(R, R). Then

q(x) ∈ Hs,ϕ
1-per (R, R) ⇔ {γn(q)}∞n=1 ∈ hs,ϕ, s ∈ (−1,∞), ϕ ∈ SV.

In particular,

q(x) ∈ Hs
1-per (R, R) ⇔ {γn(q)}∞n=1 ∈ hs, s ∈ (−1,∞).

Remark. In the preprint [4], the authors have announced, without a proof, a more general
statement,

q(x) ∈ H
�Ω
1-per(R, R) ⇔ {γn(q)}∞n=1 ∈ h

�Ω, Ω̂ =

{
Ω(n)

1 + 2|n|

}

n∈Z

,

where the weights Ω = {Ω(n)}n∈Z are supposed to be symmetric, monotone, submulti-
plicative and subexponential. This result contains the limiting case

q(x) ∈ H−1
1-per (R, R) \ H−1+

1-per (R, R) .

The implication

q(x) ∈ H−1
1-per (R, R) ⇒ {γn(q)}∞n=1 ∈ h−1

was proved in the paper [13].
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3. Proofs

Spectra of the Hill-Schrödinger operators S(q), q(x) ∈ H−1
1-per (R, R) are defined by the

endpoints {λ0(q), λ
±
n (q)}∞n=1 of spectral gaps. The endpoints as in the case of L2

1-per(R)-
potentials satisfy the inequalities

−∞ < λ0(q) < λ−
1 (q) ≤ λ+

1 (q) < λ−
2 (q) ≤ λ+

2 (q) < · · · .

For even/odd numbers n ∈ Z+ they are eigenvalues of the periodic/semiperiodic problems
on the interval [0, 1] [21, Theorem C],

S±(q)u = λu.

The operators

S±u ≡ S±(q)u := D2
±u + q(x)u,

• D2
± := −d2/dx2, Dom(D2

±) = H2
±[0, 1];

• q(x) =
∑

k∈Z

q̂(k) ei k2πx ∈ H−1
+ ([0, 1], R) ;

• Dom(S±(q)) =
{
u ∈ H1

±[0, 1]
∣∣ D2

±u + q(x)u ∈ L2(0, 1)
}

,

are well defined on the Hilbert space L2(0, 1) as lower semibounded, self-adjoint form-sum
operators, and they have the pure discrete spectra

spec (S±(q)) =
{
λ0[S+(q)], λ±

2n−1[S−(q)], λ±
2n[S+(q)]

}∞

n=1
.

In the papers [18, 25, 19, 20] the authors meticulously investigated the more general
periodic/semiperiodic form-sum operators

Sm,±(V ) := D2m
± ∔ V (x), V (x) ∈ H−m

+ [0, 1], m ∈ N,

on the Hilbert space L2(0, 1).
So, we need to find precise asymptotic estimates for eigenvalues of the operators S±(q).

It is quite a difficult problem for the form-sum operators S±(q) are not convenient for
studying. We also cannot apply the approach developed by Savchuk and Shkalikov
(see the survey [29] and the references therein) considering the operators S±(q) as quasi-
differential, since the periodic/semiperiodic boundary conditions are not strongly regular
in the sense of Birkhoff. Therefore, we propose an alternative approach which is based
on isospectral transformation of the problem.

Kappeler and Möhr [12, 26] investigated the second order differential operators L±(q),
q(x) ∈ H−1

+ ([0, 1], R) (in general, with complex-valued potentials) defined on the negative

Sobolev spaces H−1
± [0, 1],

L± ≡ L±(q) := D2
± + q(x), Dom(L±(q)) = H1

±[0, 1].

They established that the operators L±(q) with q(x) ∈ H−α
+ ([0, 1], R), α ∈ [0, 1), have

the real-valued discrete spectra

spec (L±(q)) =
{
λ0[L+(q)], λ±

2n−1[L−(q)], λ±
2n[L+(q)]

}∞

n=1

such that ∣∣λ±
n [L±(q)] − n2π2 − q̂(0)

∣∣ ≤ Cnα, n ≥ n0

(
‖q‖H−α

+
[0,1]

)
.

More precisely, for the values

γn[L±(q)] := λ+
n [L±(q)] − λ−

n [L±(q)], n ∈ N,

τn[L±(q)] :=
λ+

n [L±(q)] + λ−
n [L±(q)]

2
, n ∈ N,

they proved the following result.
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Proposition 4. (Kappeler, Möhr [12, 26]). Let q(x) ∈ H−α
+ ([0, 1], R), and α ∈ [0, 1).

Then for any ε > 0, uniformly on bounded sets of distributions q(x) in the Sobolev spaces

H−α
+ [0, 1], the values {γn[L±(q)]}

∞
n=1 and {τn[L±(q)]}

∞
n=1, n ≥ n0

(
‖q‖H−α

+
[0,1]

)
, for the

operators L±(q) satisfy the following asymptotic estimates:

i)

{
min
±

∣∣∣γn[L±(q)] ± 2
√

(q̂ + ω )(−n)( q̂ + ω) (n)
∣∣∣
}

n∈N

∈ h1−2α−ε,

ii) τn[L±(q)] = n2π2 + q̂(0) + h1−2α−ε(n),

where

{ω(n)}n∈Z
≡

{
1

π2

∑

k∈Z\{±n}

q̂ (n − k)q̂(n + k)

n2 − k2

}

n∈Z

∈

{
h1−α, α ∈ [0, 1/2),

h3/2−2α−δ, α ∈ [1/2, 1)

with any δ > 0 (see the Convolution Lemma [12, 26]).

Remark. In the papers [24, 16, 17, 25], the more general operators

Lm,±(V ) := D2m
± + V (x), V (x) ∈ H−m

+ [0, 1], m ∈ N,

on the spaces H−m
± [0, 1] were studied. In particular, an analogue of Proposition 4 was

proved.

The following statement is an essential point of our approach.

Theorem 5. (Isospectral Theorem [18, 25]). The operators S±(q) and L±(q) are isospec-

tral,

spec (S±(q)) = spec (L±(q)) .

Proof. The inclusions

spec (S±(q)) ⊂ spec (L±(q))

are obvious, since

S±(q) ⊂ L±(q).

Let us prove the inverse inclusions,

spec (L±(q)) ⊂ spec (S±(q)) .

Let λ ∈ spec (L±(q)), and f be a correspondent eigenvector or a rootvector. Therefore

(L±(q) − λId) f = g, f, g ∈ Dom(L±(q)) = H1
±[0, 1],

where f is an eigenfunction if g = 0, and a rootvector if g �= 0.
So, we get

L±(q)f = λIdf + g ∈ H1
±[0, 1],

i.e.,

L±(q)f = D2
±f + q(x)f ∈ L2(0, 1).

Thus we have proved that f ∈ Dom(S±(q)). In the case when f is a rootvector (g �= 0)
in a similar fashion we show that g ∈ Dom(S±(q)), too. Continuing this process as
necessary (note that it is finite, since the eigenvalue λ has finite algebraic multiplicity)
we obtain that all eigenvectors and rootvectors corresponding to λ belong to the domains
Dom (S±(q)) of the operators S±(q). Consequently, we can conclude that

λ ∈ spec (S±(q)) ,

hence we obtain the needed inclusions,

spec (L±(q)) ⊂ spec (S±(q)) .

The proof is complete. �
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Now, Theorem 1 follows from Proposition 4, the Isospectral Theorem 5, and [21,
Theorem C], since

q̂(n) = q̂(−n), n ∈ Z,

ω(n) = ω(−n), n ∈ Z,

and, as a consequence,

min
±

∣∣∣γn(q) ± 2
√

(q̂ + ω )(−n)( q̂ + ω) (n)
∣∣∣ = |γn(q) − 2 |(q̂ + ω) (n)|| .

The proof of Theorem 1 is complete.
To prove Theorem 2 we firstly prove its Corollary. The formula (9) follows from [12,

Corollary 0.2 (2.6)], the Isospectral Theorem 5 and [21, Theorem C]. Also it can be
proved directly as well similarly to [12, Corollary 0.2 (2.6)] using estimates (5).

Now, to prove Theorem 2 it is sufficient to apply the asymptotic estimates (5), prop-
erties (7) and (8) of the refined scales, and formula (9),

• q ∈ Hs,ϕ
1-per (R, R)

(7)
=⇒ q ∈ Hs−δ

1-per (R, R) , δ > 0
(5)
=⇒ γn = 2 |q̂(n)| + h1+2(s−δ)−ε(n)

(8)
=⇒ γn = 2 |q̂(n)| + hs,ϕ(n) =⇒ {γn(q)}∞n=1 ∈ hs,ϕ;

• {γn(q)}∞n=1 ∈ hs,ϕ (8)
=⇒ {γn}

∞
n=1 ∈ hs−δ, δ > 0

(9)
=⇒ q ∈ Hs−δ

1-per (R, R)

(5)
=⇒ γn = 2 |q̂(n)| + h1+2(s−δ)−ε(n)

(8)
=⇒ γn = 2 |q̂(n)| + hs,ϕ(n)

=⇒ {q̂(n)}n∈Z ∈ hs,ϕ(n).

Note that, since δ > 0 and ε > 0 were chosen arbitrarily, we can take them to be such
that

1 + s − 2δ − ε > 0.

The proof of Theorem 2 is complete.

Now, we are ready to prove Theorem 3.
At first, note that from [11, Theorem 1.2] we get the following asymptotic formulae

for the lengths of spectral gaps:

(10) γn(q) = 2 |q̂(n)| + h1+s(n) for q(x) ∈ Hs
1-per (R, R) , s ∈ [0,∞),

which, for integer numbers s ∈ Z+, were proved by Marchenko and Ostrovskii [14].
Using (9), (10) and (4) it is easy to prove that

(11) q(x) ∈ Hs
1-per (R, R) ⇔ {γn(q)}∞n=1 ∈ hs, s ∈ (−1,∞).

Sufficiency in Theorem 3. Let q(x) ∈ Hs,ϕ
1-per (R, R). If s ∈ (−1, 0], then using Theo-

rem 2 we obtain that {γn(q)}∞n=1 ∈ hs,ϕ. If s > 0, then

q(x) ∈ Hs,ϕ
1-per (R, R)

(7)
→֒ Hs−δ

1-per (R, R) , δ > 0
(10)
=⇒ γn(q) = 2 |q̂(n)| + h1+s−δ(n)

(8)
=⇒ γn(q) = 2 |q̂(n)| + hs,ϕ(n) =⇒ {γn(q)}∞n=1 ∈ hs,ϕ.

Sufficiency is proved.
Necessity in Theorem 3. Let us assume that {γn(q)}∞n=1 ∈ hs,ϕ. If s ∈ (−1, 0] then

from Theorem 2 it follows that q(x) ∈ Hs,ϕ
1-per (R, R). If s > 0, then

{γn(q)}∞n=1 ∈ hs,ϕ (8)
→֒ hs−δ, δ > 0

(11)
=⇒ q(x) ∈ Hs−δ

1-per (R, R)

(10)
=⇒ γn(q) = 2 |q̂(n)| + h1+s−δ(n)

(8)
=⇒ γn(q) = 2 |q̂(n)| + hs,ϕ(n) =⇒ q(x) ∈ Hs,ϕ

1-per (R, R) .



38 VLADIMIR MIKHAILETS AND VOLODYMYR MOLYBOGA

Necessity is proved.
The proof of Theorem 3 is complete.

4. Concluding remarks

In fact, we can prove the following result: if q(x) ∈ H−1+
1-per (R, R) and

(1 + 2|k|)s ≪ w(k) ≪ (1 + 2|k|)1+2s, s ∈ (−1, 0],

(1 + 2|k|)s ≪ w(k) ≪ (1 + 2|k|)1+s, s ∈ [0,∞),

then

q(x) ∈ Hw
1-per (R, R) ⇔ {γn(q)}∞n=1 ∈ hw.

This result is not covered by the theorems in the preprint [4], because it does not
require the weight function to be monotone and submultiplicative.

Appendix

The complex Sobolev spaces Hs
1-per(R), s ∈ R, of 1-periodic functions and distributions

on the real axis R are defined by means of their Fourier coefficients,

Hs
1-per(R) :=

{
f =

∑

k∈Z

f̂(k)eik2πx
∣∣∣ ‖ f ‖Hs

1-per
(R)< ∞

}
,

‖ f ‖Hs
1-per

(R) :=

( ∑

k∈Z

〈2k〉2s|f̂(k)|2
)1/2

, 〈k〉 := 1 + |k|,

f̂(k) := 〈f, eik2πx〉L2

1-per
(R), k ∈ Z.

By 〈·, ·〉L2

1-per
(R) we denote the sesqui-linear form that gives the pairing between the dual

spaces Hs
1-per(R) and H−s

1-per(R) with respect to L2
1-per(R), and which is an extension by

continuity of the L2
1-per(R)-inner product [1, 8],

〈f, g〉L2

1-per
(R) :=

∫ 1

0

f(x)g(x) dx =
∑

k∈Z

f̂(k)ĝ(k) ∀f, g ∈ L2
1-per(R).

It is useful to notice that

H0
1-per(R) ≡ L2

1-per(R).

By Hs+
1-per(R), s ∈ R, we denote the inductive limit of the Sobolev spaces Ht

1-per(R)
with t > s,

Hs+
1-per (R) :=

⋃

ε>0

Hs+ε
1-per (R) .

It is a topological space with the inductive topology.
In a similar fashion the Sobolev spaces Hs

±[0, 1], s ∈ R, of 1-periodic (1-semiperiodic)
functions and distributions over the interval [0, 1] are defined by

Hs
±[0, 1] :=

{
f =

∑

k∈Γ±

f̂

(
k

2

)
eikπx

∣∣∣ ‖ f ‖Hs
±

[0,1]< ∞

}
,

‖ f ‖Hs
±

[0,1] :=

( ∑

k∈Γ±

〈k〉2s

∣∣∣∣f̂
(

k

2

) ∣∣∣∣
2)1/2

, 〈k〉 = 1 + |k|,

f̂

(
k

2

)
:= 〈f(x), eikπx〉±, k ∈ Γ±.
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Here

Γ+ ≡ 2Z := {k ∈ Z | k ≡ 0 (mod 2)} ,

Γ− ≡ 2Z + 1 := {k ∈ Z | k ≡ 1 (mod 2)} ,

and 〈·, ·〉± are sesqui-linear forms that define the pairing between the dual spaces Hs
±[0, 1]

and H−s
± [0, 1] with respect to L2(0, 1); the sesqui-linear forms 〈·, ·〉± are extensions by

continuity of the L2(0, 1)-inner product [1, 8],

〈f, g〉± :=

∫ 1

0

f(x)g(x) dx =
∑

k∈Γ±

f̂

(
k

2

)
ĝ

(
k

2

)
∀f, g ∈ L2(0, 1).

It is obvious that

H0
+[0, 1] ≡ H0

−[0, 1] ≡ L2(0, 1).

We say that a 1-periodic function or a distribution f(x) is real-valued if Im f(x) = 0.
Let us recall that

Re f(x) :=
1

2
(f(x) + f(x)), Im f(x) :=

1

2i
(f(x) − f(x)),

(see, for an example, [31]). In terms of the Fourier coefficients, we have

Im f(x) = 0 ⇔ f̂(k) = f̂(−k), k ∈ Z.

Set

Hs
1-per(R, R) :=

{
f(x) ∈ Hs

1-per(R) | Im f(x) = 0
}

,

Hs+
1-per(R, R) :=

{
f(x) ∈ Hs+

1-per(R) | Im f(x) = 0
}

,

Hs
± ([0, 1], R) :=

{
f(x) ∈ Hs

±[0, 1] | Im f(x) = 0
}

.

Also we will need the Hilbert spaces

hs ≡ hs (Z, C) , s ∈ R,

of (two-sided) weighted sequences,

hs :=

{
a = {a(k)}k∈Z

∣∣∣∣ ‖a‖hs :=

( ∑

k∈Z

〈k〉2s|a(k)|2
)1/2

< ∞

}
, 〈k〉 = 1 + |k|.

Note that

h0 ≡ l2 (Z, C) ,

and

a = {a(k)}k∈Z
∈ hs, s ∈ R, ⇒ a(k) = o(|k|−s), k → ±∞.
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