Д.А.Кременчуцкий

Морской гидрофизический институт НАН Украины, г.Севастополь

РАСПРЕДЕЛЕНИЕ БЕРИЛЛИЯ-7 (⁷Be) МЕЖДУ ВЗВЕШЕННЫМ ВЕЩЕСТВОМ И МОРСКОЙ ВОДОЙ В ШЕЛЬФОВОЙ ЗОНЕ ЧЕРНОГО МОРЯ

Распределение 7Be между частицами взвешенного вещества и морской водой было изучено за период с июля по август 2012 г. Было показано, что при природном уровне концентрации взвеси 7Be частично адсорбируется на последней. Кроме того, относительное содержание 7Be на взвеси прямо пропорциональна ее концентрации. Результаты натурных наблюдений коэффициента распределения K_d для 7Be в морской среде показали, что его величина обратно пропорционально содержанию частиц взвеси.

КЛЮЧЕВЫЕ СЛОВА: коэффициент распределения, концентрация, бериллий-7, морская вода, взвешенное вещество.

Бериллий-7 (^{7}Be) — это относительно короткоживущий ($T_{1/2}$ = 53,3 суток) радионуклид космогенного происхождения, который образуется в атмосфере в результате взаимодействия потока космического излучения (первичного и вторичного) с атомами кислорода, углерода и азота. Из атмосферы на подстилающую поверхность он поступает с сухими и влажными атмосферными выпадениями [1].

Научный интерес к 7Be обусловлен возможностью использования радионуклида в качестве трассера для исследования физических и биогеохимических процессов в морской среде, а также валидации гидродинамических моделей циркуляции водных масс [1]. Для решения этих задач необходимы данные о его распределении между взвешенным веществом и морской водой. Для того чтобы охарактеризовать наблюдаемое распределение автором работы [2] было предложено вычислять коэффициент K_d . Следует понимать, что K_d – это не константа равновесия. В настоящее время влияние различных факторов на изменение величины этого коэффициента изучено слабо. Согласно [3] значение K_d может изменяться с изменением концентрации взвеси, величины рH, состава раствора или физических и химических свойств частиц взвеси. В тоже время, есть данные, что величина K_d для морской воды существенным образом не зависит от ее температуры. [4]. Расчет K_d проводится по формуле:

$$K_d = \frac{\left[Be_p\right]}{\left[Be_d\right] \cdot C_p},$$

где $[Be_p]$ — концентрация 7Be на частицах взвешенного вещества, Бк/л; $[Be_d]$ — концентрация 7Be в морской воде, Бк/л; C_p — концентрация взвеси, кг/л.

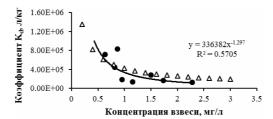
Суммарная концентрация ^{7}Be в поверхностном слое вод Мирового океана изменяется в широком интервале — от 1 до 13 Бк/м³. Относительное содержание изотопа на частицах взвеси может изменяться от 0 до 100 % от

© Д.А.Кременчуцкий, 2013

его суммарной концентрации [5 – 8]. Авторами работы [9] было показано, что 7 Ве достигает близкого к равновесному распределению менее чем за неделю, а относительное содержание радионуклида на частицах взвеси есть функция от концентрации последней. Их лабораторные эксперименты показали, что хотя Be в значительной степени содержится на взвеси при высоких концентрациях последней в морской среде (90 % при 100 мг/л, $K_d = 9.10^4$ л/кг), при ее типичных величинах концентрации процент значительно меньше (50 % при 20 мг/л, $K_d = 5.10^4$ л/кг). Эти результаты согласуются с полученными ими данными натурных наблюдений (выполненных в прибрежном регионе), которые дают величину K_d в интервале от 3.10^5 до 8.10^5 л/кг при концентрации взвеси от 0,2 до 3,55 мг/л. Также, ими было показано, что ${}^{7}Be$ имеет гораздо более сильное сродство к неорганическим частицам, чем к органическому материалу, что согласуется с результатами для многих других металлов [10]. Авторами работы [3] сообщается величина коэффициента $K_d = 10^4$ л/кг, для интервала концентрации взвеси от 10 до 830 мг/л в морской системе, в то время как авторами работы [11] сообщается величины в интервале от 4,7·10⁴ до $1.05 \cdot 10^5$ л/кг при концентрации взвеси 100 мг/л.

Информация о вертикальном распределении K_d отсутствует.

Исходя из результатов, приведенных в доступной литературе, данные о содержании и распределении 7Be в водах Черного моря ограничиваются нашими наблюдениями, а оценки величины K_d для шельфовой зоны моря не проводились.


Целью данной работы являлось исследование связи между содержанием 7Be на частицах взвеси и их концентрацией, а также получение оценок величины коэффициента распределения K_d .

Материалы и методы. В качестве сорбента использовались полипропиленовые картриджи импрегнированные гидроксидом железа. Для преконцентрирования изотопа, содержащегося на частицах взвеси, морская вода пропускалась через полипропиленовые картриджи с размером пор в 1 микрон. Объем прокаченной воды изменялся от 2,0 до 4,5 м³, время отбора одной пробы от 6 до 18 часов. Погрешность измерений, в целом, определялась статистической погрешностью счета активности проб и изменялась от 13 до 55 %. Более подробно методические аспекты изложены в [12].

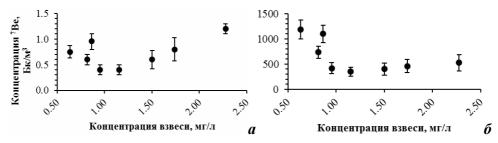
В период с июля по август 2012 г. с океанографической платформы, расположенной в п. Кацивели, Крым, Украина (~ 0.5 км от берега) было отобрано 36 проб морской воды с последующим определением концентрации растворенного и содержащегося на частицах взвеси 7Be . Согласно полученным результатам, концентрация растворенного 7Be в поверхностном слое вод изменялась от 0.6 до 4.4 Бк/м 3 , средняя 2.0 ± 0.52 Бк/м 3 ; концентрация радионуклида на частицах взвеси изменялась от 0.35 до 1.3 Бк/м 3 , средняя 0.7 ± 0.18 Бк/м 3 .

Средняя суммарная концентрация бериллия по результатам измерений в п. Кацивели $2.9 \pm 0.65 \; \text{Бк/м}^3$.

В п. Кацивели было также получено два профиля растределения концентрации изотопа с глубиной с интервалом в 4 дня: концентрация растворенного ^{7}Be уменьшается от 1.7 ± 0.31 до 0.1 ± 0.21 ; концентрация ^{7}Be содержащегося на частицах взвеси с глубиной практически не изменялась и

Р и с. 1. Зависимость коэффициента K_d от суммарной концентрации взвеси. Точки — данные наблюдений, треугольники — результаты приведенные в работе [4], линия — интерполяция данных наблюдений.

составляла в среднем 0.6 ± 0.1 Бк/м³; суммарная концентрация изменялась от 2.25 ± 0.41 до 0.45 ± 0.29 Бк/м³.


Анализ полученных данных. Используя формулу, приведенную выше, были получены оценки коэффициента K_d . Согласно полученным результатам, коэффициент K_d в поверхностном слое вод за время проведения измерений изменялся в интервале от $1,3\cdot10^5$ до $8,3\cdot10^5$ л/кг, среднее значение — $(3,6\pm1,08)\cdot10^5$ л/кг. Полученные оценки хорошо согласуются с данными представленными в работе [4].

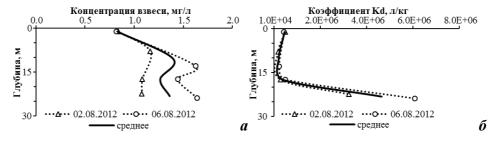
Наблюдается статистически значимая связь между изменением величины K_d и суммарной концентрацией взвешенного вещества (r=-0.66; p=0.95), а также между изменением объемной концентрации 7Be на частицах взвеси и изменением концентрации последней (r=0.54; p=0.95) и между изменением массовой концентрации 7Be на частицах взвеси и изменением концентрации взвеси (r=-0.57; p=0.95) (рис.1, 2).

Таким образом, увеличение содержание взвеси приводит к росту объемной концентрации бериллия на ней, но, в тоже время, количество радионуклида, содержащегося на единичной массе взвеси уменьшается. Рост объемной концентрации можно объяснить увеличение количества доступных для адсорбции сайтов (увеличение вероятности взаимодействия между взвешенным веществом и 7 *Ве*), в то время как уменьшение массовой концентрации можно объяснить уменьшением коэффициента K_d .

Представленные на рис.1 зависимости K_d от концентрации взвеси по данным [4] и полученными в этой работе согласуются.

Корреляционный анализ показал, наличие обратной, статистически значимой, связи между изменением относительного вклада объемной концентрации бериллия на частицах взвеси и изменением концентрации последней $(r=-0.6;\ p=0.95)$. Величина относительного вклада объемной концентрации изотопа на частицах взвеси в суммарную изменяется в интервале от 13 до 42 %, средняя -22 %.

Р и с . 2 . Зависимость объемной (*a*) и массовой (*б*)концентрации ^{7}Be от концентрации взвеси.



Р и с . 3 . Вертикальное распределение концентрации растворенного 7Be (*a*), массовой (*б*) и объемной (*в*) концентрации 7Be .

Вариация содержания ${}^{7}Be$ в поверхностном однородном слое не превышает погрешности измерений и быстро убывает в слое термоклина (рис.3). С глубиной концентрация взвеси увеличивается, массовая концентрация радионуклида на частицах взвеси уменьшаться, а вариация объемной концентрация радионуклида на частицах взвеси не превышает погрешности измерения. В придонном слое отмечается увеличение и концентрации взвеси и концентрации (объемной и массовой) изотопа на ней. Можно предположить, что это связанно со взмучиванием донных отложений. Концентрация растворенного бериллия от поверхности до дна уменьшается на порядок. Величина коэффициента K_d в слое, расположенном над термоклинном, существенным образом не изменяется, а в слое ниже термоклина – увеличивается на порядок (Рис.4). Авторами работы [3] были проведены эксперименты по изучение временной изменчивости K_d . Было получено, что для большинства радиоактивных трассеров его величина в течение первых 5 дней может увеличиваться на порядок, а впоследствии, в целом, оставаться постоянной. Можно предположить, что влияние этого эффекта наиболее существенно в слое вод, расположенном ниже термоклина. Таким образом, увеличение K_d может быть связанно с его временной изменчивостью в отсутствие дополнительных источников и стоков радионуклида.

Таким образом, с глубиной происходит перераспределение концентрации радионуклида между растворимой и содержащейся на взвеси частями.

Р и с . 4 . Вертикальное распределение концентрации взвешенного вещества (a) и коэффициента K_d (δ).

Можно предположить, что адсорбция на частицы взвешенного вещества является одним из основным механизмов выведения радионуклида из морской среды. В то же время, в работе [3] отмечается, что при низких концентрациях взвеси формирование коллоидов и их коагуляция — это основной механизм выведения радионуклидов, в том числе и 7Be .

Выводы. Согласно представленным результатам, ${}^{7}Be$ в поверхностном слое вод шельфовой зоны Черного моря находится преимущественно в растворенном состоянии. Вертикальное распределение суммарной концентрации в верхнем перемешанном слое, в целом, можно считать однородным, а величину коэффициента K_d постоянной.

На величину K_d существенное влияние оказывает изменение концентрации взвеси, увеличение содержание последней приводит к уменьшению K_d и массовой концентрации изотопа. В тоже время, увеличение содержание взвешенного вещества привело к увеличению объемной концентрации 7Be на ней.

Показано, что изменение объемной концентрации 7Be с глубиной происходит в результате радиоактивного распада и перераспределения между растворенной и адсорбированной на частицах взвеси частями.

Список литературы

- 1. *Handbook* of Environmental Isotope Geochemistry. Series: Advances in Isotope Geochemistry. Baskaran M. (Ed.).—Berlin Heidelberg: Springer-Verlag, 2011.—951 p.
- 2. *Thomas A.J.* Geochemistry of natural and artificial radionuclides: application to the study of the continent-ocean interface. Ph.D. thesis.— Paris: Paris State University, 1988.—409 p.
- 3. *Li Y.-H.; Burkhardt L.; Buchholtz M.; O'Hara P.; Santschi P.H.* Partition of radiotracers between suspended particles and seawater // Geochimica et Cosmochimica Acta.—1984.—v.48, Issue 10.—P.2011-2019.
- 4. *Hawley N., Robbins J.A., Eadie B.J.* The partitioning of ⁷beryllium in fresh water // Geochimica et Cosmochimica Acta.— 1986.— v.50.— P.1127-1131.
- 5. Andrews J.E., Hartin C., Buesseler K.O. ⁷Be analyses in seawater by low background gamma-spectroscopy // Journal of Radioanalytical and Nuclear Chemistry. 2008. v.277, № 1. P.253-259.
- 6. Gosink I.A. On the use of cosmogenic radionuclides of beryllium for ocean transport studies // Mar. Sci. Comm. 1976. v.2, № 6. P.413-417.
- 7. Silker W.B. Beiyllium-7 and fission products in the Geosecs II water column and applications of their oceanic distributions // Earth and Planetary Science Letters.—1972.—v.16.—P.131-137.
- 8. *Silker W.B.* Horizontal and vertical distributions of radionuclides in the North Pacific ocean // J. of Geoph. Res. 1972. v.77(6). P.1061-1070.
- 9. *Bloom N., Crecelius E.A.* Solubility behavior of atmospheric ⁷Be in the marine environment // Marine Chemistry. 1983. v.12. P.323-331.
- 10. *O'Connor D.J.*, *Connolly J.P.* The effect of concentration of adsorbing solids on the partition coefficient // Water Res. 1980. v.14. P.1517-1523.
- 11. *Nyffeleru P., Li Y-H., Santxhi P.H.* A kinetic approach to describe trace-element distribution between particles and solution in natural aquatic systems // Geochim.Cosmochim. Acta.—1984.—v.48.—P.1513-1522.

12. *Кременчуцкий Д.А.*, *Батраков Г.Ф.*, *Семенов В.В.* ⁷Ве в прибрежной зоне Черного моря // Системы контроля окружающей среды.— Севастополь: МГИ НАН Украины.— 2011.— вып.16.— C.251-257.

Материал поступил в редакцию 13.07.2013 г.

АНОТАЦІЯ. Розподіл 7 Ве між частинками суспензії і морською водою було вивчено за період з липня по серпень 2012 р. Було показано, що при природному рівні концентрації суспензії 7 Ве частково адсорбується на останній. Крім того, адсорбція 7 Ве прямо пропорційна її концентрації. Результати натурних спостережень коефіцієнта розподілу K_d для 7 Ве в морському середовищі показали, що його величина обернено пропорційна вмісту часток суспензії

ABSTRACT. The partition of ${}^{7}Be$ between suspended particles and seawater was studied from July to August 2012. It was showed that ${}^{7}Be$ appears to be partially adsorbed on suspended matter at natural suspended loads. Further, adsorption of ${}^{7}Be$ appears to be directly proportional to suspended load. Field observations of the partitioning coefficient (K_d) of ${}^{7}Be$ in marine environment show that it varies inversely with the solids concentration.