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We consider a Weyssenhoff fluid assuming that the space-time is
homogeneous and isotropic, therefore being relevant for cosmolog-
ical considerations of gravity theories with torsion. It is explicitly
shown that the Weyssenhoff fluids obeying the Frenkel condition or
the Papapetrou–Corinaldesi condition are incompatible with the
cosmological principle which restricts the torsion tensor to have
only the vector and axial vector components. Moreover, it turns
out that the Weyssenhoff fluid obeying the Tulczyjew condition is
also incompatible with the cosmological principle. This condition
has not been analyzed so far in this context. Based on this result,
we propose to reconsider a number of previous works that analyzed
cosmological solutions of the Einstein–Cartan theory, since their
spin fluids did not obey usually the cosmological principle.

1. Introduction

Over the last years, cosmology has become a very active
field of research containing many open questions that re-
quire the further investigation. Hawking, Penrose, and
others have shown that, under fairly general assump-
tions, solutions of Einstein’s field equations evolve singu-
larities. This, from a conceptual point of view, is rather
unsatisfactory, we refer the reader to [1].

When cosmological models with torsion were first
studied, it was hoped for that the inclusion of torsion
would help to avoid these singularities. Unfortunately,
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this could only be achieved assuming quite unrealistic
matter models (see, e.g., [2]). It turns out, however, that
most of these cosmological models with torsion did not
satisfy the cosmological principle, sometimes also known
as the Copernican principle, that strongly restricts the
metric and the torsion tensor.

The Copernican principle states that the Universe is
spatially homogeneous and isotropic on very large scales.
This principle takes the following mathematically pre-
cise form. The four-dimensional 4d space-time manifold
(M, g) is foliated by 3d constant time space-like hyper-
surfaces which are the orbits of a Lie group G acting
on M, with the isometry group SO(3). Following the
Copernican principle [3], we assume all fields to be in-
variant under the action of G

Lξgµν = 0 , LξTλµν = 0 , (1)

where ξ are the (six) Killing vectors generating the
space-time isometries. The metric tensor is denoted by
gµν , Tλµν denotes the torsion tensor, and Greek indices
label the holonomic components. For the rest of the pa-
per, only anholonomic components of tensors labelled by
Latin indices are used.

Kopczyński initiated the investigation of cosmologi-
cal models with torsion in [4] and [5], who assumed a
Weyssenhoff fluid to be the source of both curvature and
torsion. In [4], a non-singular universe with torsion was
constructed and an anisotropic model of the universe
with torsion was analyzed in [5]. The cosmological prin-
ciple in the above strict sense (1) was first developed in
the Einstein–Cartan theory by Tsamparlis in [3], where it
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was also suggested to reconsider the results in [4,5], since
the Weyssenhoff fluid turns out to be incompatible with
the cosmological principle (see also [6]). The spin tensor
used by [5] in a cosmological context had just one non-
vanishing component S23 = K, where K was assumed
to be a function of the time variable K = K(t). Such
a spin tensor, as we will show below, is not compatible
with the cosmological principle, a fact that was noted
by Kopczyński. It should also be pointed out that if we
require only the metric of Friedman–Robertson–Walker
(FRW) type and put no restrictions on the torsion ten-
sor, then the Weyssenhoff fluid can consistently be used
as a source for curvature and torsion (see the energy-
momentum tensor Eq. (5.2) and (5.3) in [6]). However,
by doing so, one must drop the second condition of (1),
LξTλµν = 0, and use a weaker notion of the cosmologi-
cal principle. For a recent example where the so-called
cosmological model with macroscopic spin fluid was an-
alyzed, see [7].

Applying the restrictions (1) to gµν yields the FRW-
type metric

ds2 = dt2 −
( a(t)

1 + k
4 r

2

)2

(dx2 + dy2 + dz2), (2)

where r2 = x2 + y2 + z2, and the 3-space is spherical for
k = 1, flat for k = 0, and hyperbolic for k = −1. If we
impose the restrictions (1) on the torsion tensor [3], its
allowed components are

Txxt = Tyyt = Tzzt = h(t) ,
Txyz = Tzxy = Tyzx = f(t) , (3)

where we follow the notation of [8]. Hence, the cos-
mological principle allows a vector torsion component
Tt = T aat = 3h, along the world lines, and an axial vec-
tor component Txyz = fεxyz, within the hypersurfaces
of constant time. Such a totally skew-symmetric tor-
sion tensor in cosmology was considered earlier in [9],
where h = 0 was assumed. The geometry parame-
ter k was redefined to include the remaining torsion by
k̄ = k− f2a2/2. Also with h = 0, the cosmological infla-
tion could be explained by torsion in [10], using a rough
model.

2. Cosmological Field Equations

The spin-connection 1-form ω̃ij in theories with torsion
can be split into a torsion-free part (the usual spin-
connection 1-form ωij related to the Christoffel symbol
Γkij) and a contortion 1-form part Ki

j that takes the

torsion of space-time into account:

ω̃ij = ωij +Ki
j . (4)

Here, the torsion tensor (Cartan’s torsion) and the con-
tortion tensor are related by the following algebraic re-
lation

T i =
1
2
T ijke

i ∧ ej = Dei = dei + ω̃ije
j = Ki

j ∧ ej , (5)

where we used that ωij is a torsion-free connection. The
latter relation between torsion and contortion also im-
plies that their vector and axial vector components are
simply related by

T[ijk] = K[ijk] , Tij
j =

1
2
Kji

j . (6)

Since the metric and the contortion (or torsion) compo-
nents that are compatible with the cosmological constant
are fixed, one can compute any geometrical quantity of
interest.

Metric (2) gives rise to the basis 1-forms

et = dt , ex,y,z =
a(t)

1 + k
4 r

2
dx, y, z , (7)

which together with the non-vanishing torsion compo-
nents (4) yield the non-vanishing connection 1-forms

ωtx =
ȧ

a
ex + hex ,

ωty =
ȧ

a
ey + hey ,

ωtz =
ȧ

a
ez + hez ,

ωxy =
ky

2a
ex − kx

2a
ey − f

2
ez ,

ωxz =
kz

2a
ex − kx

2a
ez +

f

2
ey ,

ωyz =
kz

2a
ey − ky

2a
ez − f

2
ex (8)

that are computed from (4); T i = dei + ω̃ije
j , where

the torsion two form can be obtained from (4) via T i =
(1/2)T ijkej ∧ ek. The field equations of the Einstein–
Cartan theory [2] are obtained by varying the usual
Einstein–Hilbert action with respect to the vielbein and
the spin-connection as independent variables

Rij −
1
2
Rδij = 8πΣij ,

T ijk − δijT llk − δikT ljl = 8π sijk , (9)

Σij is the canonical energy-momentum tensor, and sijk
is the spin tensor.
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3. Weyssenhoff Fluid

The ideal Weyssenhoff fluid [11] is a generalization of the
ideal fluid to take into account the properties of spin and
torsion in space-time. Its canonical energy-momentum
tensor is given by

Σij = piuj + P (uiuj + gij) ,

pi = ρui − ul∇k(ukSli) , (10)

sijk = uiSjk , (11)

where pi is the momentum density of the fluid, and ui
is the fluid’s velocity. By ρ and P, we denoted the en-
ergy density and the pressure of the fluid, respectively.
The intrinsic angular momentum tensor Sij satisfies the
relation

Sij = −Sji . (12)

The spin tensor Sij can be decomposed into two 3-
vectors

µ := (S01, S02, S03) , (13)

that, in case we assume the Frenkel condition [12], van-
ishes in the rest-frame. The second vector

σ := (S23, S31, S12) (14)

in the rest-frame can be regarded as the spin density.
Integrability of the particles’ equations of motion re-

quires one more condition that the spin tensor has to
satisfy,

ζiSji = 0 , (15)

where the vector ζi is usually taken to be the velocity
vector of the fluid ui, following Frenkel [12]. It is also
possible to choose the momentum density according to
Tulczyjew [13]. Another frequently used condition was
put forward by Papapetrou and Corinaldesi [14] who as-
sumed the condition

Sti = 0 , (16)

where t stands for the time component of the spin ten-
sor. In the following sections, we investigate whether
a Weyssenhoff fluid obeying one of the three presented
integrability conditions is compatible with the cosmolog-
ical principle.

4. Frenkel Condition

If we assume the Frenkel condition [12] ζi = ui, then the
spin contribution of the energy-momentum tensor can
be rewritten as

ul∇k(ukSli) = ulSli∇kuk + uluk∇kSli =

= uluk∇kSli = −alSli . (17)

In the third and fourth steps, the Frenkel condition was
necessary for the modifications, and we introduced the
acceleration of the fluid aj defined by aj = (uk∇k)uj .
Hence, Eqs. (10) and (11) with regard for the Frenkel
condition yield

Σij = ρuiuj − P (uiuj + gij) + alSliuj ,

sijk = uiSjk , uiSik = 0 . (18)

This implies that, at the zero acceleration aj of a fluid,
one is back at the Einstein gravity [15]. The interpreta-
tion of the contribution of the spin angular momentum
tensor in (10) in terms of the acceleration strongly de-
pends on the Frenkel condition.

The totally skew-symmetric part of the torsion ten-
sor (3) is allowed by the cosmological principle. Since the
four velocity ui enters the definition of the spin tensor
(11), a Weyssenhoff-like fluid cannot be the source of the
totally skew-symmetric torsion component (3). On the
other hand, it is the Frenkel condition (15) with ζi = ui

that does not allow the Weyssenhoff fluid to be a source
of the trace components (3) of the torsion tensor. More
explicitly, multiplying Eq. (9b) for the torsion field by
δji leads to

−2T llk = 8πsllk = 8πulSlk = 0 , (19)

where (11) and the Frenkel condition were taken into
account for the last steps. Therefore, we have explicitly
shown that the Weyssenhoff fluid obeying the Frenkel
condition is incompatible with the cosmological principle
put forward in [3].

5. Papapetrou–Corinaldesi Condition

Assuming the Papapetrou–Corinaldesi [14] condition Stj
has the following consequences for the torsion tensor im-
plied by the spin fluid. As before, since the fluid’s four
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velocity enters the definition of a spin tensor, the to-
tally skew-symmetric torsion has to vanish. Second, the
traced torsion field equation (9b) yields

−2T llk = 8πsllk = 8πulSlk = 8πδltSlk = 8πStk = 0 ,
(20)

where the vanishing of the trace part of the torsion tensor
is identically the condition of Papapetrou–Corinaldesi
(16).

Therefore, we again conclude that also the Weyssen-
hoff fluid obeying the Papapetrou–Corinaldesi condition
is incompatible with the cosmological principle (since we
have ui = δi0, the Papapetrou–Corinaldesi condition and
the Frenkel one in fact take the same form).

6. Tulczyjew Condition

According to our information, it has not been analyzed
so far if the Weyssenhoff fluid obeying the Tulczyjew
condition [13] is compatible with the cosmological prin-
ciple. As in the previous section, the fluid cannot be a
source of the totally skew-symmetric component of the
torsion tensor, because the four velocity ui of the fluid
is present in Eq. (11). However, in this case, (15) does
not vanish identically on general ground, and we arrive
at

−2T llk = 8πsllk = 8πulSlk , (21)

where the last term on the right-hand side need not to
vanish. The Tulczyjew condition, Eq. (15) with ζi = pi

explicitely written out, leads to

Sijp
j = Sij

(
ρuj − ul∇k(ukSlj)

)
= 0 , (22)

which can be used to express the last term on (21) by

ρSiju
j = Sijul∇k(ukSlj) . (23)

The fluid’s four velocity simply reads uj = δj0, and
Eq. (23) yields, by taking (8) into account, the following
form of the Tulczyjew condition that the spin fluid has
to satisfy:

ρSi0 = Sij

(
Ṡ0j + Γ0S0j

)
, (24)

where the dot means the differentiation with respect to
time t. In contrast to the two previous cases, we find
that this condition does not imply the vanishing of the
resulting trace of the torsion tensor. For the trace of the
Christoffel symbol, we find Γ0 = Γkk0 = 3(H+h), where,

by H, we denoted the Hubble parameter defined by H =
ȧ/a. Equations (24) provide us with for conditions (i =
0, 1, 2, 3) which we will analyze in more details. For i =
0, the left-hand side of (24) vanishes, and one is left with

0 = S0j

(
Ṡ0j + Γ0S0j

)
= −S0j

(
Ṡ0j + Γ0S0j

)
, (25)

which can be written in an equivalent form by using the
introduced vectors µ and σ in (13) and (14) and leads
to

0 =
(
µ̇ + Γ0 µ

)
· µ , (26)

where · means the usual inner product of vectors.
From this, we conclude that the vectors µ and (µ̇ +

Γ0µ) are orthogonal to each other. For the remaining
values i = 1, 2, 3, condition (24) takes the following form
in terms of the three-vector:

µ =
1
ρ

(
µ̇ + Γ0 µ

)
× σ . (27)

Here, we now see that (26) is not an independent equa-
tion since we derive from the latter that µ ⊥ (µ̇ + Γ0µ)
and, moreover, µ ⊥ σ. Therefore, we find the following
non-vanishing components of the induced torsion tensor
via the field equations (21):

T ll0 = 0 ,

T lli = 4πµ , (28)

where µ is given by Eq. (27). Note that the index i only
takes the values 1, 2, 3, and we furthermore suppressed
the explicit index for the vector µ. We can now try to
continue the construction of a spin fluid that is compati-
ble with cosmological principle, namely the Weyssenhoff
fluid obeying the Tulczyjew condition. In principle, we
have two possibilities: (a) we choose the vector µ of the
spin tensor so that it satisfies condition (26), and we
choose the spin density vector σ so that Eq. (27) is sat-
isfied. On the other hand, (b) allows us to prescribe the
spin density vector σ. Then, in order to get an allowed
µ, one has to solve the vector differential equation (27),
so that each solution satisfies (26). However, one must
be careful with the above result. The cosmological prin-
ciple allows a vector torsion component, but only along
the world lines, T llt 6= 0. The other components are
excluded. Therefore, also the Weyssenhoff fluid obeying
the Tulczyjew condition is incompatible with the cosmo-
logical principle, since (28a) vanishes identically.
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7. Conclusions and Outlook

The restrictions that follow from assuming the homo-
geneity and the isotropy on the very large scales of
the Universe (the cosmological principle) allow one met-
ric component and two torsion components; the vector
and axial vector components of the torsion tensor. We
showed that the Weyssenhoff fluids obeying either the
Frenkel or the Papapetrou–Corinaldesi condition are in-
compatible with this principle. Furthermore, we ana-
lyzed the Tulczyjew condition which, in principle, al-
lows one to construct a non-trace-free torsion tensor.
However, its time component, allowed by the cosmo-
logical principle, vanishes identically. Therefore, it has
been shown that no spin fluid obeying the common
integrability conditions is compatible with the cosmo-
logical principle. This rather surprising result shows
the necessity to reconsider the previous works on cos-
mology with torsion, since none of these results can
be regarded as a truly cosmological model with tor-
sion.

Furthermore, it raises the question, whether an inte-
grability condition exists that allows a spin fluid to have
homogeneous and isotropic torsion components. The
construction of such a spin fluid, if possible, could be
a subject of the further research. If it will turn out that
such a spin fluid does not exist, this would have quite
significant consequences for the physical applicability of
such models. The possible non-existence would indicate
that the Weyssenhoff fluid is not a very good model for
a macroscopic spin fluid. If, on the other hand, such
a cosmological spin fluid can be constructed, it would
be very interesting to study its properties. For example,
the consequences of a truly cosmological spin fluid on the
singularities, mentioned in the introduction, were worth
a thorough investigation. Moreover, it would then be
possible to reconsider some of the previously suggested
models in a real cosmological fashion. Finally, we would
like to mention the possibility of applying the cosmo-
logical principle to the more general hyperfluid [16, 17].
However, a axial vector component for the torsion tensor
cannot be obtained from the hyperfluid, since a gener-
alized form of Eq. (11) essentially enters the spin ten-
sor.
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СПIНОВI РIДИНИ В ОДНОРIДНОМУ ТА IЗОТРОПНОМУ
ПРОСТОРI-ЧАСI

К.Г. Бомер, П. Броновскi

Р е з ю м е

Розглянуто рiдину Вiссенхофа у припущеннi, що простiр-час є
однорiдним та iзотропним i тому придатний для космологiчно-
го розгляду теорiй гравiтацiї з крученням. Показано, що рiдини
Вiссенхофа, для яких виконується умова Френкеля або умова
Папапетроу–Корiналдезi, є несумiсними з космологiчним прин-
ципом, згiдно з яким тензор кручення має тiльки векторну i
аксiальну векторну компоненти. Бiльше того, виявилося, що
рiдина Вiссенхофа, що задовольняє умову Тульчiєва, також
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несумiсна з космологiчним принципом. Але цю умову не було
проаналiзовано повнiстю в цьому контекстi. Ґрунтуючись на
цих результатах, запропоновано переглянути деякi попереднi

роботи, в яких проаналiзовано космологiчнi розв’язки теорiї
Ейнштейна–Картана, оскiльки їхнi спiновi рiдини звичайно не
задовольняють космологiчний принцип.

612 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5


