СЕНСОЭЛЕКТРОНИКА

Выводы

Упругая деформация базы простого однопереходного тензотранзистора может изменять значения напряжений переключения благодаря эффектам модуляции инжекции и отклонения, соответственно.

Основным определителем тензочувствительности однопереходного тензотранзистора с управляющим p-n-переходом является эффект отклонения и обусловленная им деформационная зависимость коэффициента переноса составного биполярного транзистора. Тензочувствительность однопереходного тензотранзистора с управляющим p-n-переходом более чем на порядок выше аналогичной характеристики простого однопереходного тензотранзистора.

Предложенный преобразователь давления с частотным выходом представляет практический интерес с точки зрения высокой чувствительности, возможности работы в условиях повышенного уровня электромагнитных помех и относительно низкой стоимости.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

- 1. Викулин И. М., Викулина Л. Ф., Стафеев В. И. Гальваномагнитные приборы.— М.: Радио и связь, 1983.
- 2. Бойко И. И., Жадько И. П., Козловский С. И., Романов В. А. Оптимизация параметров чувствительного элемента на основе поперечной тензоэдс в кремниевых преобразователях давления // В сб.: Оптоэлектроника и полупроводниковая техника.— Киев: Наукова думка, 1993.— Вып. 27.— С. 94—98.
- 3. Бойко И. И., Романов В. А. Электрические и фотоэлектрические свойства полупроводников с анизотропной электропроводностью // ФТП.— 1977.— Т. 11, № 5.— С. 817—835.
- 4. Baltes H. P., Popovic R. S. Integrated semiconductor magnetic field sensors // Proc. IEEE Trans.— 1986.— Vol. 74, N 8.— P. 1107—1132.
- 5. Бабичев Г. Г., Козловский С. И., Романов В. А., Шаран Н. Н. Кремниевый однопереходный тензотранзистор // ЖТФ. 2002. Т. 47, № 4. С. 66—71.
- 6. Babichev G. G., Kozlovskiy S. I., Romanov V. O., Sharan M. M. Silicon strain sensitive unijunction transistor with controlling *p*–*n*-junction //Sensors and Actuators A.— 2002.— Vol. 100, N 1—2.— P. 236—243.

Д. т. н. Л. Ф. ВИКУЛИНА, В. А. МИНГАЛЁВ

Украина, г. Одесса, Академия связи Украины, СКБ «Молния» E-mail: phys@usat.ukrtel.net

Дата поступления в редакцию 24.03 2004 г.

Оппонент д. ф.-м. н. Ш. Д. КУРМАШЕВ (ОНУ им. И. И. Мечникова, г. Одесса)

МОСТОВЫЕ МАГНИТОЧУВСТВИТЕЛЬНЫЕ СЕНСОРЫ

Чувствительность сенсоров на порядок выше известных за счет того, что все элементы моста реагируют на действие магнитного поля.

Магниточувствительные транзисторы широко применяются в измерительной технике и автоматике [1, 2]. Простейшим транзистором такого типа является одноколлекторный биполярный транзистор (ОМТ) в двухполюсном включении (рис. 1). В отсутствие магнитного поля инжектированные из эмиттера дырки движутся по кратчайшей траектории к коллектору (прямая О). Магнитное поле указанного направления отклоняет инжектированные дырки в сторону *s*-области с высокой скоростью рекомбинации на поверх-

Рис. 1. Одноколлекторный магнитотранзистор и его выходные характеристики

ности n-базы (пунктир B), что уменьшает количество доходящих до p-коллектора дырок и его ток, а соответственно, и падение напряжения на нагрузочном резисторе. Выходной сигнал $\Delta U = U_{\rm B} - U_{\rm O}$ растет с увеличением индукции магнитного поля B.

Если вместо нагрузочного резистора использовать второй ОМТ с противоположным расположением *s*-области (**puc. 2**), то чувствительность сенсора возрастает более чем в 2 раза — вследствие того, что одновременно с ростом сопротивления одного ОМТ в магнитном поле уменьшается сопротивление другого ОМТ.

Добавив в схему еще два параллельно включенных ОМТ, получим измерительный мост, достоинством которого является, во-первых, то, что выходной сиг-

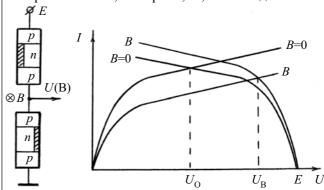


Рис. 2. Схема включения двух магнитотранзисторов и их характеристики

СЕНСОЭЛЕКТРОНИКА

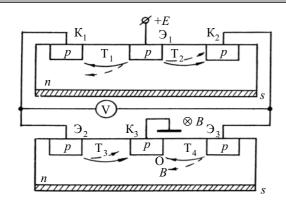


Рис. 3. Магниточувствительный мост из четырех одноколлекторных магнитотранзисторов

нал в диагонали моста при B=0 равен нулю, и, вовторых, отсутствует дрейф нуля от температуры.

Практическая реализация такого сенсора показана на **рис.** 3. Каждая пара ОМТ изготовлена в отдельной пластине n-полупроводника, причем в верхней паре общим для двух ОМТ является p-эмиттер (Э), а в нижней — p-коллектор (К). В отсутствие магнитного поля траектории движения инжектированных дырок (сплошные линии при B=0), токи и сопротивления всех четырех ОМТ равны, и выходной сигнал U=0. При включении магнитного поля инжектированные из эмиттеров дырки в транзисторах T_2 и T_3 отклоняются от s-области в сторону коллекторов (пунктирные траектории), и их сопротивление уменьшается, а в T_1 и T_4 , наоборот, дырки отклоняются к s-области, и их сопротивление увеличивается. Происходит разбаланс моста, и U растет с увеличением B.

Опытные образцы сенсоров изготавливались из высокоомного кремния с удельным сопротивлением $20~\mathrm{kOm\cdot cm}$ как материала, имеющего наибольшее значение длины диффузионного смещения инжектированных носителей заряда. Размеры эмиттеров и коллекторов 0.6×0.6 мм, расстояние между ними 0.8 мм, технология создания электродов — обычная для кремниевых полупроводников. При напряжении питания моста $E=30~\mathrm{B}$ и потребляемом токе $1.3~\mathrm{MA}$ магниточувствительность $\gamma=U/(IB)$ достигает $3\cdot10^5~\mathrm{B/(A\cdot Tn)}$, что на порядок выше, чем у одиночных ОМТ [1].

Аналогичный измерительный мост можно реализовать и из двух двухколлекторных магнитотранзисторов (ДМТ) с противоположным типом проводимости, показанных на **рис. 4**. Принцип действия каждого ДМТ, например p-n-p-типа, заключается в том, что в отсутствие магнитного поля инжектированные из эмиттера дырки распределяются поровну между

коллекторами, их токи равны и разность потенциалов между коллекторами U=0. Магнитное поле отклоня-

ет дырки в сторону одного из коллекторов, его ток увеличивается, а второго — уменьшается. Если в цепях коллекторов включены нагрузочные резисторы, то U растет с увеличением B.

Включение вместо нагрузочных резисторов второго ДМТ n-p-n-типа также позволяет увеличить магниточувствительность и устранить дрейф нуля моста от температуры. В этом случае при указанном направлении магнитной индукции токи коллекторов К увеличиваются, а коллекторов К₁ — уменьшаются, и напряжение в диагонали моста U также растет с увеличением В. При смене направления B меняется и знак U.

Экспериментальные образцы ДМТ p–n–p- и n–p-n-типа изготавливались из кремния с удельным сопротивлением 200 Ом·см, длина коллекторов 200 мкм, расстояние между ними 150 мкм, эмиттер 30×30 мкм. При напряжении питания E=90 B, токе моста 5 мА

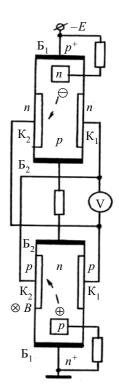


Рис. 4. Мостовая схема из двух двухколлекторных магнитотранзисторов с противоположной проводимостью

магниточувствительность достигает $10^6\,\mathrm{B/(A\cdot Tn)}$, что на порядок больше, чем у датчика на одном ДМТ.

Таким образом, созданы мостовые конструкции полупроводниковых магниточувствительных сенсоров, имеющие на порядок большую чувствительность за счет того, что все четыре элемента моста реагируют на действие внешнего магнитного поля.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

- 1. Викулина Л. Ф. Магниточувствительные транзисторы // Технология и конструирование в электронной аппаратуре.— 1998.— № 1.— С. 25—27.
- 2. Викулина Л. Ф., Глауберман М. А. Физика сенсоров температуры и магнитного поля.— Одесса: Маяк, 2000.