Н. Н. МОСКОВЧЕНКО, к. т. н. А. М. СВЕТЛИЧНЫЙ

Россия, Таганрогский гос. радиотехнический университет E-mail: n_moskovchenko@mail.ru

Дата поступления в редакцию 05.09 2005 г. — 26.04 2006 г. Оппонент к. т. н. Ю. В. ОСТРОВСКИЙ (НИИ "Украналит", г. Киев)

ГАЗОАНАЛИЗАТОРЫ НА ОСНОВЕ ПОРИСТОГО КАРБИДА КРЕМНИЯ

Рассмотрены различные конструкции газоанализаторов на основе пористого карбида кремния. Показана перспективность использования этого материала в качестве активного слоя сенсоров.

В последние десятилетия в связи с развитием промышленности экологический мониторинг стал неотъемлемой частью средств сохранения среды обитания. Его развитие невозможно без разработки все новых датчиков различных неэлектрических величин и, в том числе, датчиков состава газов.

Начало практическому использованию эффекта влияния газов на электрические свойства поверхности полупроводников положил в 1960-х годах Н. Тагучи. На основе керамического SnO_2 он изготовил газочувствительное устройство, электросопротивление которого изменялось пропорционально концентрации некоторых газов в воздухе, и запатентовал его [1]. Прибор позволял контролировать содержание в воздухе H₂, CO, CH₄ и др. Японская компания «Figaro» до сих пор ежегодно выпускает миллионы таких датчиков, и они широко применяются, например, в системах предупреждения взрывов при работах с природным газом. Главное их достоинство возможность многократного использования (после десорбции газа при повышенной температуре).

Позже было установлено, что практически все окислы металлов, являющиеся полупроводниками, обладают газовой чувствительностью. В настоящее время изготавливают датчики газов на основе SnO_2 , ZnO, NiO, CuO, TiO₂, ZrO₂, Y₂O₃, WO₃ и других окислов [2]. Принцип их действия основан на том, что в результате физической адсорбции молекул газа на поверхности полупроводника его поверхностное сопротивление изменяется пропорционально числу адсорбированных молекул (или концентрации газа в воздухе) [3].

Повышенный в последнее время интерес к полупроводниковому карбиду кремния вообще и к созданию газочувствительных датчиков на его основе, в частности, не случаен. Недостатком кремниевых газочувствительных структур являлась низкая селективность, дрейф параметров и неширокий диапазон рабочих температур. Использование карбида кремния позволяет уменьшить или устранить эти недостатки. Это связано со свойствами структуры карбида кремния и его электрофизическими параметрами [4—6]. В процессах адсорбции и десорбции газов участвуют приповерхностные слои микрокристаллов, поэтому чем больше отношение поверхности кристаллов к их объему, тем эффективнее работа датчика, тем выше его чувствительность к газам. Наличие развитой поверхности за счет пор в пористом SiC делают его перспективным материалом для чувствительного элемента сенсоров [7].

Первые работы по исследованию газочувствительности пористого SiC были проведены в California Institute of Technology (США). Датчик был изготовлен на основе 6H–SiC и работал в температурном диапазоне 100—400°C [8]. Принцип работы датчика основывался на разложении адсорбированных углеводородов в слое пористого SiC и изменении потенциального барьера контакта "пористый SiC—металл". Диссоциация газовых молекул происходит при приложении определенного для каждого газа напряжения к электродам, что позволяет проводить идентификацию газов. При этом ток через датчик пропорционален концентрации газа, а использование SiC позволяет сенсору функционировать при высоких температурах и повышенной радиации.

Конструкция датчика представляет собой сетчатый электрод из Cr, который получен напылением Cr на слой пористого SiC, что обеспечивает эквипотенциальный контакт и возможность диффузии молекул газа. Омический контакт из Ni выполнен на обратной стороне подложки 6H–SiC (см. врезку на **рис. 1**).

ВОПРОСЫ ПРИБОРОСТРОЕНИЯ

Характеристики датчика исследовались в потоке чистого аргона при различных температурах. На рис. 1 показаны вольт-амперные характеристики (**BAX**) датчика для 223° С при введении в поток аргона метана и пропана с концентрацией 0,5%. Нелинейность ВАХ дает возможность разделения углеводородных соединений при небольшой их концентрации. Потенциалы минимальных значений второй производной тока по напряжению (d^2I/dU^2 , **рис. 2**) являются характерными для конкретного углеводородного соединения и могут быть использованы для идентификации при анализе газовых смесей.

Рис. 2. Зависимость изменения второй производной тока по напряжению характеристики, представленной на рис. 1

В работе [9] было показано, что помимо метана и пропана пористый SiC необычайно чувствителен к NH₃. Здесь конструкция датчика имела следующий вид (**рис. 3**).

Нижний алюминиевый контакт

Рис. 3. Схема газоанализатора конденсаторного типа с пористым слоем SiC в качестве активного элемента

Тонкая пленка (p-типа) SiC толщиной 5000 Å осаждалась на стандартную кремниевую подложку методом плазменного осаждения из газовой фазы (PECVD) и легировалась бором. Затем электрохимическим травлением/анодированием в 73%-ном растворе HF при плотности тока анодирования от 1—50 мA/см² и времени травления от 30 с до 10 мин был получен пористый слой SiC с порами диаметром >100 нм. На пористый слой и на обратную сторону подложки были нанесены алюминиевые электроды. В поток несущего газа добавлялись небольшие количества аммиака, концентрация которого изменялась последовательно от 0,5 до 9,5 млн⁻¹. На **рис. 4** показан отклик сенсора к аммиаку в потоке азота. Отсутствие гистерезиса позволяет говорить о том, что сенсор чувствителен к концентрации NH₃ много меньше 0,5 млн⁻¹. Механизм газовой чувствительности, по всей вероятности, следующий: при подаче малого напряжения на по-

Рис. 4. Отклик сенсора на пленке пористого карбида кремния к аммиаку концентрацией 0,5, 5 и 9,5 млн⁻¹ в потоке азота

верхности SiC формируется тонкий обедненный носителями заряда слой. Молекулы аммиака, проходя через этот обедненный слой, разлагаются, и атомы водорода адсорбируются на слое, изменяя его переходную емкость, что затем фиксируется измерительным прибором как изменение в общей емкости.

Газоанализатор на основе пористого SiC может быть выполнен и как полевой транзистор [10]. На **рис. 5** показано сечение такого сенсора.

Рис. 5. Газоанализатор на пористом SiC, выполненный как полевой транзистор:

I — подложка из гексагонального SiC; 2 — пористый слой; 3 — металлическая решетка из хрома; 4 — управляющий электрод; 5 — затвор из пористого SiC; 6 — диэлектрик из нитрида алюминия; 7, 8 — электроды истока и стока, соответственно; 9 — сильнолегированный SiC, играющий роль канала

Газы обладают разным сродством к электрону и характеризуются либо окислительными (O₂, O₃, Cl₂ и др.), либо восстановительными (H₂, CO, CH₄, C₂H₅OH и др.) свойствами. Соответственно при взаимодействии газов с поверхностью пористого SiC электроны либо захватываются из приповерхностной области (окислители — акцепторы), либо передаются полупроводнику (восстановители — доноры). Поэтому взаимодействие с «донорными» газами приводит к снижению барьера для дрейфа электронов в пористом слое и к возрастанию электропроводности для SiC *n*-типа. При взаимодействии же пористого SiC с газом-окислителем его электросопротивление, наоборот, возрастает по сравнению с исходным значением, которое имелось в отсутствие контролируемого газа.

На **рис. 6** показаны дополнительные модификации газоанализаторов. На рис. 6, *а* на часть пористого слоя 2 осаждается каталитический металл 4. Для этого можно использовать любой материал, проявляющий каталитические свойства к углеводородам. Это могут быть платина, ванадий, карбид молибдена, карбид вольфрама, карбид титана, карбид ниобия или палладий.

ВОПРОСЫ ПРИБОРОСТРОЕНИЯ

Рис. 6. Газоанализаторы на пористом SiC с каталитическим металлом, нанесенным на пористый слой (*a*) и на монокристаллическую подложку (*б*):
l — подложка 6H–SiC; *2* — пористый слой; *3* — металлическая решетка из хрома; *4* — каталитический металл

Наличие каталитического материала позволяет протекать реакциям диссоциации углеводородов без приложения напряжения к управляющему электроду, однако для этого требуется повышенная температура. Если каталитический материал нанести только на часть пористого слоя, оставив достаточно большую площадь пористого SiC для адсорбции газов, то при работе в области низких температур (100—400°С) отклик сенсора будет зависеть от приложенного напряжения. При повышенных температурах (более 500°С) сигнал будет также определяться реакциями диссоциации углеводородов в каталитическом металле.

На рис. 6, б пористый слой 2 стравлен перед осаждением каталитического металла. Это устраняет возможные ослабления каталитического сигнала из-за слоя пористого SiC, имеющего высокое электрическое сопротивление.

Для регенерации прибора и удаления продуктов реакции на сенсор подается обратное напряжение, равное максимальному напряжению диссоциации.

В проведенных нами исследованиях конструкция сенсора имела вид, представленный на **рис.** 7.

Рис. 7. Сечение сформированной структуры Ті/пористый SiC/6H–SiC

Анодирование происходило в электролите $HF:C_2H_5OH:H_2O(1:1:2)$ при плотности тока $J=70 \text{ мA/см}^2$ в течение 3 мин. Были использованы пластины карбида кремния 6H-SiC *n*-типа, легированного азотом до концентрации 1.1017 см-3. После анодирования на поверхности образцов пор обнаружено не было, что объясняется наличием тонкого (≈0,1 мкм) поверхностного слоя и согласуется с литературными данными. После удаления поверхностного слоя травлением в КОН (700°С, 10 мин) на поверхности образцов появляются крупные поры. Ті-контакты на поверхности пористого слоя формировались путем терморезистивного напыления и последующей фотолитографии. После нанесения контактов структура подвергалась быстрому термическому отжигу в вакууме (БТО) при температуре 700°С.

На рис. 8 представлены зависимости сопротивления от температуры для образцов до и после ано-

Рис. 8. Температурная зависимость сопротивления образцов 6H–SiC до и после анодирования

Рис. 9. Температурная зависимость чувствительности пористого SiC при разных концентрациях аммиака:

 $l - 1000 \text{ млн}^{-1}$; $2 - 500 \text{ млн}^{-1}$; $3 - 2000 \text{ млн}^{-1}$

дирования, а также после вскрытия пор. Увеличение сопротивления для образцов, прошедших анодирование, объясняется снижением концентрации основных носителей в пористом слое. Чувствительность сенсора определялась как $S=(R_{\rm возд}-R_{\rm газ})/R_{\rm газ}$, где $R_{\rm возд}$ — сопротивление сенсорного элемента на воздухе, $R_{\rm газ}$ — сопротивление чувствительного слоя при наличии газа. Рабочая температура сенсора, при которой газовая чувствительность максимальна, для аммиака составила 95°С (**рис. 9**). Время отклика снижалось от 5 мин при температуре 78°С до 2 с при 300°С.

Регенерация сенсора проводилась нагревом структуры, время ее составляло около 30 мин при температуре 150°С и несколько секунд при температуре 300°С.

Из вышеизложенного следует, что использование пористого карбида кремния в качестве газочувствительного сенсора является перспективным направле-

ВОПРОСЫ ПРИБОРОСТРОЕНИЯ

нием развития газоанализаторов, т. к. позволяет получать высокую чувствительность, быстрое восстановление и селективность измерений в условиях экстремальных параметров окружающей среды.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Pat. 45-38200 Japan. SnO_2 gas sensor / Taguchi.— 1962. 2. Butta N., Cinquegrani L., Migno E. et al. A family of tinoxide-based sensors with improved selectivity to methane // Sensors and Actuators B.— 1992.— Vol. 6.— P. 253—256.

3. Рембеза С. И. Нужен ли человечеству искусственный нос? // Природа.— 2005.— № 2.— С. 5—12.

4. Лучинин В. В., Таиров Ю. М. Карбид кремния — перспективный материал электронной техники // Изв. вузов. Электроника.— 1997.— № 1.— С. 10—37.

5. Лучинин В. В., Мальцев П. П., Маляков Е. П. Широкозонные материалы — основа экстремальной электроники будущего // Микроэлектроника.— 1999.— Т. 28, № 1.— С. 21—29.

6. Лебедев А. А., Челноков В. Е. Широкозонные полупроводники для силовой электроники // Физика и техника полупроводников.— 1999.— Т. 33, вып. 9.— С. 1096—1099.

7. Сеченов Д. А., Агеев О. А., Светличный А. М. и др. Газочувствительные датчики на основе карбида кремния.— Баку: Мутарджим, 2004.

8. Shields V. B., Ryan M. A., Williams R. M. A variable potential porous silicon carbide hydrocarbon gas sensor // Inst. Phys. Conf. Ser.— 1996.— N 142.— P. 1067—1070.

9. Connolly E. J., Timmer B., Pham H. T. M. et al. A new ammonia sensor // Eurosensors XVIII.— Rome.— 2004.— P. 672—674.

10. Pat. 5698771 US. Varying potential silicon carbide gas sensor / V. B. Shields.— 1997.