НОВЫЕ ПОДХОДЫ К ИССЛЕДОВАНИЮ ПАТОГЕНЕЗА И ДИАГНОСТИКЕ ПРЕГЕСТОЗА

Академик НАН Украины В.И. ГРИЩЕНКО, профессор О.П. ЛИПКО, Т.В. РУБИНСКАЯ, профессор Л.В. ПОТАПОВА, доцент И.Н. ЩЕРБИНА

Харьковский государственный медицинский университет

Показаны иммунологические и нейрогуморальные нарушения при позднем гестозе беременных и роль мелатонина в его развитии.

Поздний гестоз беременных на протяжении многих лет остается наиболее грозным осложнением гестационного процесса и в настоящее время является одной из основных причин невынашивания, мертворождения, кровотечения в ІІІ периоде родов и раннем послеродовом периоде [1].

Поздний гестоз — это патологическое состояние, синдром полиорганной функциональной недостаточности, который может осложнять беременность и характеризуется нарушениями деятельности сосудистой, нервной, эндокринной и иммунной систем, системы гемостаза, изменениями в функции почек, печени, плаценты, головного мозга, различными метаболическими изменениями адаптационных систем организма матери.

Многими научными коллективами проводятся исследования разных аспектов патогенеза, диагностики, терапии и профилактики гестозов. Но хотя и достигнуты определенные успехи в изучении этой патологии, она традиционно занимает 2—3-е место в структуре материнской смертности, а перинатальная смертность при этом заболевании колеблется от 10 до 30% [2, 3].

По данным литературы, частота поздних гестозов возросла с 7,5% в начале 70-х годов до 16—17% в 1998 г. [2, 4]. Увеличение частоты поздних гестозов объясняется неудовлетворительной экологической обстановкой, ухудшением социальных условий жизни, несбалансированным, а иногда и недостаточным питанием, а также повышением уровня экстрагенитальной заболеваемости и рядом других факторов, приводящих к значительному снижению активности физиологических адаптационных механизмов.

Патогенез этого заболевания до настоящего времени окончательно не выяснен. Предложено более 30 научно обоснованных теорий, объясняющих патогенез позднего гестоза: интоксикационная, почечная, эндокринная, плацентарная, аллергическая, адаптационная, кортиковисцеральная, иммунологическая, генетическая и многие другие. В каждой из них рассматриваются отдельные звенья сложной цепи патогенеза, что приводит к определенным трудностям при проведении профилактики и лечения позднего гестоза.

Возможности борьбы с данным осложнением беременности в основном зависят от разработки новых и усовершенствования существующих методов ранней диагностики и лечения. Клинические наблюдения указывают на то, что при современном уровне развития медицины поздний гестоз во время гестации вылечить невозможно, но адекватная и своевременная интенсивная терапия способна предотвратить переход его в более тяжелые формы, поэтому доклиническая диагностика позднего гестоза имеет важное практическое значение.

Для диагностики доклинической стадии поздне-

го гестоза используются физические, биохимические, иммунологические и гормональные методы.

В.Ф. Нагорная и Н.А. Зелинская определяли содержимое эстрадиола и плацентарного лактогена (ПЛ) в периферической крови беременных. В их исследованиях отмечено изменение гормональной функции фетоплацентарного комплекса у беременных из группы риска по возникновению позднего гестоза, уже начиная с 9–12 нед. У беременных с высоким риском развития позднего гестоза уровень ПЛ снижался на 69% по сравнению с контролем (женщины с физиологическим течением беременности) и составлял $26,4\pm1,6$ нмоль/л (р < 0,001); эстрадиола — на 41% ($16,4\pm0,7$ нмоль/л, р < 0,001), что свидетельствует о раннем формировании плацентарной недостаточности [5].

Известно также, что поздний гестоз беременных сопровождается нарушением взаимосвязи всех трех систем: антиоксидантной, серотонин-инсулин-кортизоловой и фетоплацентарной. Доказано, что нарушение гормонального гомеостаза происходит уже на стадии прегестоза и может быть ранним доклиническим критерием в диагностике позднего гестоза [6]. Так, известен способ ранней его диагностики на основе выявления нарушений в гормональном состоянии: повышения уровней серотонина и кортизола, снижения содержания в сыворотке крови инсулина, плацентарного лактогена и эстриола. При этом серотонин у женщин с неосложненной беременностью составляет 0.447 ± 0.029 мк M/л, тогда как у беременных с прегестозом его уровень повышается до 0.534 ± 0.024 мк М/л (p < 0.05). Содержание инсулина у здоровых беременных составляет 23,20±1,64 мк ME/мл, у беременных с прегестозом — 18,70±1,41 мк ME/мл (р < 0.05). Имеет место снижение содержания эстриола с $50,38\pm1,41$ мМ/л до $46,21\pm1,64$ мМ/л соответственно (р < 0,05). Уровень плацентарного лактогена находится в пределах $226,35\pm14,57$ мМ/л у женщин с физиологической беременностью и $178,87\pm12,20$ мМ/л — у беременных с прегестозом (p < 0.05) [6].

Заслуживает внимания также способ ранней диагностики позднего гестоза на основании повышения интенсивности процессов перекисного окисления липидов. У женщин с прегестозом повышается уровень диеновых конъюгат в сыворотке крови — до $0,709\pm0,04$ усл.ед./мг лип. в сравнении с контрольной группой $(0,575\pm0,03$ усл.ед./мг лип., р < 0,001); малонового диальдегида — до $13,73\pm0,49$ мк М/л в сравнении с контрольной группой $(12,16\pm0,37$ мк М/л, р < 0,05); общих липидов — до $9,21\pm0,22$ г/л в сравнении с $8,62\pm0,25$ г/л контрольной группы (р < 0,05); снижается содержание каталазы — до $23,08\pm0,56$ мк ат/л в сравнении с контролем $(28,57\pm0,81$ мк ат/л, р < 0,05); витамина Е в сы

воротке крови — до $21,13\pm0,41$ мк M/π по сравнению с контролем ($23,12\pm0,73$ мк M/π , p < 0,05); содержание витамина A в сыворотке крови — до $3,07\pm0,16$ мк M/π по сравнению с контролем ($3,62\pm0,3$ мк M/π , p < 0,05). Следовательно, поздний гестоз уже на доклинической его стадии сопровождается повышением процессов свободнорадикального окисления и снижением активности антиоксидантной защиты [6].

Большой арсенал существующих методов диагностики прегестоза на сегодняшний день не удовлетворяет практических врачей, так как определение большого количества показателей вызывает ряд технических трудностей и многие из них не являются достаточно информативными, поскольку могут изменяться при ряде других патологических состояний. Все это затрудняет интерпретацию различных критериев доклинической диагностики позднего гестоза и проведение адекватных лечебных мероприятий.

Только некоторые теории (иммунологическая и нейрогуморальная) способны связать в единый патофизиологический механизм все процессы, которые наблюдаются при позднем гестозе [7].

Главными медиаторами, осуществляющими связь между нервной и иммунной системами, являются регуляторные пептиды, среди которых ведущая роль отводится мелатонину, открытому Ароном Лернером в 1958 г. [цит. по 8].

Мелатонин (индол-N-ацетил-5-метилокситриптамин) — это нейрогормон, регулирующий иммунные, нейроэндокринные и прочие функции организма [8]. Продукция его в организме человека включает центральное звено (мелатонинпродуцирующие клетки, размещенные в пинеальной железе и системе зрения — сетчатке и гардериановой железе) и периферическое звено, которое вырабатывает экстрапинеальный мелатонин — мелатонинпродуцирующие клетки, расположенные в желудочно-кишечном тракте (ЖКТ), дыхательных путях, поджелудочной железе, надпочечниках, щитовидной железе, тимусе, мозжечке, мочеполовой системе, плаценте и других органах. Кроме того, в последние годы обнаружен активный синтез мелатонина в неэндокринных клетках: тучных клетках, естественных киллерах, эозинофильных лейкоцитах, тромбоцитах, эндотелиоцитах и ретикулоэпителиоцитах тимуса [9, 10].

Гормон эпифиза мелатонин попадает в спинномозговую жидкость, затем в общий кровоток. Транспортной формой для мелатонина является сывороточный альбумин. Высокая липофильность мелатонина обеспечивает его быстрое проникновение через мембраны в другие биологические среды [1]. Концентрируясь в гипоталамусе и среднем мозге, мелатонин угнетает секрецию гипоталамических гормонов [11].

Таким образом, благодаря широкому спектру биологической активности мелатонина, наличию большого количества мелатонинпродуцирующих клеток в ЖКТ и других органах данный гормон играет ключевую роль, действуя в локальной координации клеточной функции и межклеточных связей в норме и при патологии, выступая в качестве паракринной сигнальной молекулы [12]. Поэтому изучение влияния мелатонина на нейроэндокринные и иммунологические изменения, происходящие в организме беременной женщины при позднем гестозе, представляет большой научный интерес. Установлено, что мелатонин ингибирует выработку адренокортикотропного гормона, который, по существующим данным, является основным гормоном стресса. Еще в 1987 г. Г.А. Паллади указывал на повышенное содержание адренокортикотропного гормона (АКТГ) и кортизола в крови беременных с поздним гестозом по сравнению с неосложненной беременностью. Эти выводы, касающиеся АКТГ, были подтверждены В.Г. Карпенко [13]. Итак, стрессовые состояния вызывают повышение уровня серотонина и снижение синтеза мелатонина. В.Г. Карпенко (2001) доказал наличие низкой экскреции мелатонина с мочой у беременных с поздним гестозом [13].

Снижение уровня мелатонина во время стресса приводит к повышению АКТГ, который, в свою очередь, действует на надпочечники, повышает выработку глюкокортикоидов [14]. Кроме того, происходит раздражение секреторных нейронов надпочечников с последующим повышением выработки в них адреналина и норадреналина, которое вызывает сокращение мышц, повышение периферического сосудистого сопротивления, а следовательно, приводит к повышению систолического и диастолического артериального давления [14].

Под действием АКТГ происходит также повышение секреции альдостерона, который, в свою очередь, активирует в клетках почечного эпителия синтез ферментов, повышающих активность натриевого насоса, и приводит к увеличению реабсорбции натрия и хлора в почечных канальцах и, как следствие, к повышению уровня натрия в крови [14]. Вместе с тем снижается реабсорбция ионов калия в почечных канальцах и уменьшается его содержание в организме. Повышение концентрации натрия в крови и тканевой жидкости влечет за собой увеличение осмотического давления, которое сопровождается задержкой воды в организме и приводит к возникновению отеков и повышению артериального давления — характерных симптомов позднего гестоза [14]. Кроме того, существуют данные, которые указывают на влияние мелатонина на секрецию предсердного и натрийуретического факторов, также отвечающих за суточные колебания артериального давления [15].

Основной синтез мелатонина осуществляется ночью [16]. На этом, возможно, и основывается давно известный предложенный профессором В.В. Строгановым принцип лечения беременных с поздними гестозами: размещение таких беременных в затемненном помещении, что способствует усилению выработки мелатонина и снижению АКТГ.

Установлено, что секреция мелатонина не только колеблется на протяжении суток, но и зависит от времени года: максимальная продукция его наблюдается зимой, минимальная — весной [14]. Этим фактом, вероятно, можно объяснить обострение и высокий процент заболеваний поздним гестозом именно весной [17, 18].

Мелатонин стимулирует иммунную систему. Активность Т- и В-иммунных клеток повышается на протяжении суток параллельно с возрастанием концентрации мелатонина в крови [16]. Доказано, что мелатонин принимает участие в регуляции функции тимуса и щитовидной железы, повышая активность различных популяций Т-лимфоцитов и макрофагов [19]. А поскольку известно, что во время позднего гестоза

снижается общее количество Т- и В-лимфоцитов, появляется диспропорция между хелперами и супрессорами [7], можно предположить, что в этих процессах не последнюю роль играет и мелатонин.

Большая часть информации, касающейся биосинтеза, метаболизма и физиологических эффектов мелатонина, является результатом эксперимента, однако уже сейчас имеются убедительные данные, которые указывают на участие данного гормона в развитии различных патофизиологических процессов в организме [20]. Определена связь экскреции мелатонина с фазами менструального цикла, изучено влияние мелатонина на выработку гонадотропинов, вазопрессина и окситоцина, которые обеспечивают нормальное течение беременности, родов и послеродового периода [21].

Рассматривая поздний гестоз как срыв механизмов адаптации организма, нельзя не обратить внимание на мелатонин, который выступает в роли эндогенного адаптогена и является регулятором биологических ритмов, влияет на гомеостаз [21].

В монографии В.И. Грищенко [21] было показано,

Литература

- Выявление риска возникновения поздних гестозов / К.В. Воронин, Г.М. Борец, О.Ю. Писанко и др. // Педиатр., акуш. и гинекол. 1990. № 2. С. 57–58.
- 2. *Айламазян Э.К.* Неотложная помощь при экстремальых состояниях в акушерской практике.— С.Пб.: Наука, 1993.— 284 с.
- 3. *Кулаков В.И., Мурашка Л.Э.* Новые подходы к терминологии, профилактике и лечению гестоза // Акуш. и гинекол. 1998. № 5. С. 3—6.
- Дроздова Т.А., Пухальская Л.Р. Современные аспекты позднего гестоза и оперативного родоразрешения // Сб. науч. работ Ассоциации акушеров-гинекологов Украины.— Симферополь, 1998.
- Нагорная В.Ф., Зелинская Н.А. Ранняя профилактика ОПГ — гестоза у беременных из групп риска с предвиденной патологией спиральных артерий // Педиатр., акуш. и гинекол.— 2000.— № 4.— С. 74—76.
- 6. *Ганжий И.Ю.* Участие системы ПОЛ-АО, серотонин–инсулин–кортизол и плацентарной в формировании механизмов адаптации у беременных из группы риска относительно возникновения позднего гестоза // Там же.— 1997.— № 3.— С. 62–63.
- 7. *Липко О.П.* Місце та роль імунної системи в патогенезі пізнього гестозу та вплив на неї з метою терапії: Автореф. дис. ... д-ра мед. наук.— Харків, 1997.— 35 с.
- Регуляция антиоксидантного гомеостаза и системы детоксикации организма гормоном мелатонином. Роль мелатонинзависимых рецепторов в реализации этой функции / И.Ф. Беленичев, Ю.И. Губский, Э.Л. Левицкий и др.— ЗГМУ, 2002.— С. 3–14.
- 9. *Райхлин Н.Т., Кветной И.М.* Диффузная эндокринная система (APUD-система).— М.: Медицина, 1992.— С. 15–27.
- Осадчук М.А., Киричук В.Ф., Кветной И.М. Диффузная нейроэндокринная система: общебиологические и гаст-

что именно мелатонину принадлежит ведущая роль в регуляции нормального течения беременности и родов. Доказано, что к концу беременности содержание мелатонина в организме резко снижается. Экскреция его с мочой у женщин с угрожающими абортами или угрожающими преждевременными родами оказалась достоверно (р < 0,001) сниженной на всем протяжении беременности по сравнению со здоровыми беременными [21], причем в большинстве случаев причиной угрозы прерывания беременности являлся поздний гестоз [7].

Таким образом, приведенные данные свидетельствуют о том, что мелатонин, являясь одним из главных медиаторов между нервной, эндокринной и иммунологической системами, выступает в качестве паракринного регулятора и может влиять на развитие позднего гестоза. Исследования влияния мелатонина на различные патофизиологические процессы, происходящие в организме беременной, помогут изучить новые аспекты патогенеза позднего гестоза, а следовательно, открыть новые направления в лечении и профилактике данной патологии.

- роэнтерологические аспекты.— Саратов: Изд-во Сарат. мед. vн-та, 1996.— 128 с.
- 11. *Афанасьев Ю.И., Юрина Н.А.* Гистология.— М.: Медицина, 1999.— 744 с.
- 12. Влияние мелатонина на показатели биологического возраста, продолжительность жизни и развитие спонтанных опухолей у мышей / В.Н. Анисимов, Н.Ю. Заварзина, М.А. Забежинский и др. // М.: Вопр. онкол.— 2000.— Т. 46, № 3.— С. 311–319.
- 13. *Карпенко В.Г.* Исследование адренокортикотропного гормона и мелатонина у беременных с преэклампсией и анемией // Пробл. мед.— 2001.— № 3–4.— С. 16–17.
- Sandyk R., Averbuch G.T. The relationship between melatonin secretion and serum cholesterol in patients with multiple sklerosis/ Int. J. Neurosci. — 1994.— Vol. 76.— P. 81–86.
- 15. *Анисимов В.Н.* Продолжительность жизни и развитие новообразований // Клин. геронтол.— 1996.— № 2.— С. 3–8.
- Arendt J. Melatonin and the Mammaalian Pineal Gland.— London, 1994.— 331 p.
- 17. Attar-Levy D., Lesyr A. Seasonal affective disorders // Presse med.—1990.— Vol. 19.— P. 465–470.
- Lescowit T.E. Seasonal affective disorders: a consideration of the role of the pineal gland // Med. Hypothes.— 1990.— Vol. 33.— P. 155–158.
- 19. *Хунданов Л., Гладков А.* Мелатонин универсальный регулятор жизнедеятельности // Мед. газета.— 1997.— № 29.— С. 3.
- 20. *Арендт Дж.* Чудо или миф? (Исследования мелатонина): Пер. с англ. // Новости эндокринол.— 1999.— № 4.— С. 33–35.
- Грищенко В.И. Роль эпифиза в физиологии и патологии женской половой системы.— Харьков: Высшая школа, 1979.— С. 99–135.

Поступила 02.04.2004

NEW APPROACHES TO PATHOGENESIS AND DIAGNOSIS OF PREGESTOSIS

V.I. Grischenko, O.P. Lipko, T.V. Rubinskaya, L.V. Potapova, I.N. Scherbina

Summary

Immune and neurohumoral disorders in late gestosis and the role of melatonin in its development are shown.