программируемого фотошаблона в цифровой электронной литографии.

Заключение

Проведенные исследования позволили установить область применения компактной ЕКV-модели МОПтранзистора для расчета характеристик КНИ МОПтранзисторов. Расчетные характеристики сравнивались с экспериментальными выходными характеристиками КНИ МОП-транзистора, в котором подканальная область соединена с истоком. Разработанная схема управления кремниевым микрокатодом обеспечивает линейное регулирование автоэмиссионных токов в интервале 3 нА-3 мкА при напряжении на электродах 100 В. Спроектирована топология микрокатода, интегрированного со схемой управления, которую можно мультиплицировать в матрицы больших размеров. Полученные результаты показывают, что матрицы управляемых автоэмиссионных кремниевых микрокатодов могут использоваться в качестве программируемых фотошаблонов в цифровой электронной литографии с субмикронным разрешением.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Colinge J. P. Silicon-on-insulator technology: Materials to VLSI.— Norwell (Ma, USA): Kluwer Academic Publishers, 1997.

2. Пат. 36463 України. Спосіб виготовлення локальних тривимірних структур «кремній-на-ізоляторі» / І. Т. Когут, В. І. Голота, А. О. Дружинін, С. В. Сапон.— 27.10.08.

3. Пат. 29698 України. Ключовий елемент на діодах Шотткі з структурами «кремній-на-ізоляторі» / І. Т. Когут, В. І. Голота, А. О. Дружинін.— 25.01.08.

4. Пат. 29701 України. Контакт в інтегральних пристроях зі структурою «кремній-на-ізоляторі» / І. Т. Когут, А. О. Дружинін, В. І. Голота.— 25.01.08.

5. Druzhynin A., Holota V., Kohut I. et al. The device-technological simulation of the field-emission micro-cathodes based on threedimensional SOI-structures // Electrochemical Society Trans.— 2008.— Vol. 14, N 1.— P. 569.

6. Gildenblat G., Zhu Z., McAndrew C. C. Surface potential equation for bulk MOSFET / Solid-State Electronics.— 2009.— Vol. 53, N 1.— P. 11—13.

7. Bucher M., Lallement C., Enz C. et al. The EPFL-EKV MOSFET model equations for simulation.— EPFL, Lausanne, Switzerland: Technical Report. Model Version 2.6.— 1997.— P. 18.

8. Angelov G. V., Asparuhova K. K. Optimization and simulation of the EKV model using MatLab // Conf. "Electronics 2007". Book 1.— Sozopol (Bolgaria).— 2007.— P. 19—21.

9. Collinge J. P., Park J. T. Application of the EKV model to the DTMOS SOI transistor // J. of semiconductor and science.— 2003.— Vol. 3, N 4.— P. 223—226.

10. Дружинин А. А., Голота В. И., Когут И. Т. и др. Приборно-технологическое моделирование автоэмиссионных кремниевых микрокатодов // Технология и конструирование в электронной аппаратуре.— 2008.— № 5.— С. 43—49.

К. ф.-м. н. Н. Б. ГОРЕВ, к. ф.-м. н. И. Ф. КОДЖЕСПИРОВА, к. ф.-м. н. Е. Н. ПРИВАЛОВ

Украина, г. Днепропетровск, Институт технической механики E-mail: gorev57@mail.ru

Дата поступления в редакцию 18.09 2009 г. Оппонент д. ф.-м. н. Д. В. КОРБУТЯК (ИФП им. В. Е. Лашкарёва, г. Киев)

ВОЛЬТ-ФАРАДНЫЕ ИЗМЕРЕНИЯ В ТОНКОПЛЕНОЧНЫХ ЭПИТАКСИАЛЬНЫХ СТРУКТУРАХ GaAs

Предложен метод измерения вольтфарадных характеристик полупроводниковых структур с участками крутого падения с использованием измерительного переменного напряжения умеренно малых амплитуд.

Вольт-фарадные методы определения параметров полупроводниковых структур просты и удобны. Однако в таком практически важном случае как тонкопленочные эпитаксиальные структуры GaAs, которые широко используются в современной микроэлектронике, их применение сопряжено с трудностями. Это связано с тем, что в этих структурах на границе «пленка—подложка» имеется область встроенного объемного заряда, образование которой обусловлено резким градиентом концентрации легирующей примеси в сочетании с наличием незаполненных глубоких центров захвата в полуизолирующей компенсированной подложке [1]. Смыкание этой области с областью объемного заряда барьера Шоттки приводит к невозможности переноса на тонкопленочные эпитаксиальные структуры вольт-фарадных методов, разработанных для объемных полупроводников [2, 3]. Кроме того, сложной задачей может быть и само проведение вольт-фарадных измерений, поскольку это же смыкание приводит к резкому падению барьерной емкости с ростом напряжения на барьере Шоттки [1]. Поэтому для того, чтобы измеренная барьерная емкость совпадала с фактической, амплитуда переменного напряжения, прикладываемого к барьеру Шоттки для измерения емкости, должна быть весьма малой. Измерения же на таких малых амплитудах могут быть затруднены, в частности, вследствие шума.

В данной работе предлагается метод, позволяющий измерять вольт-фарадные характеристики с участками крутого падения при помощи переменного напряжения умеренно малых амплитуд (порядка 100 мВ), на которых работают стандартные измерители емкости.

Общепринятая процедура измерения зависимости барьерной емкости C от величины постоянного напряжения V_{DC} на барьере Шоттки заключается в следующем: к барьеру прикладывается малое перемен-

ное напряжение $\tilde{V} = V_{AC} \sin \omega t$, где V_{AC} и ω — амплитуда и круговая частота переменного напряжения, t— время; измеряется амплитуда I_{AC} переменного тока I через барьерную емкость (тока смещения), и соответствующая постоянному напряжению V_{DC} барьерная емкость находится по формуле

$$C = \frac{1}{\omega} \frac{I_{AC}}{V_{AC}}.$$
 (1)

Однако формула (1) дает фактическую емкость только в случае, когда ток \tilde{I} также является синусоидальным. Если же это не так, то емкость, вычисленная по формуле (1), отличается от фактической. Действительно, в общем случае связь между током смещения и барьерной емкостью определяется выражением, которое легко получить из определения барьерной емкости как производной заряда барьера Шоттки по напряжению:

$$\tilde{I} = C(V) \frac{\mathrm{d}V}{\mathrm{d}t},\tag{2}$$

где *V*— мгновенное значение напряжения на барьере Шоттки; C(V) — соответствующее этому напряжению мгновенное значение барьерной емкости.

Разлагая $C(V)=C(V_{DC}+V_{AC}\sin\omega t)$ в ряд по степеням V_{AC} , выражение для тока смещения (2) можно представить в следующем виде:

$$\tilde{I} = \omega V_{AC} \left[C(V_{DC}) + \frac{1}{8} C''(V_{DC}) V_{AC}^2 \right] \cos \omega t + + \frac{1}{2} \omega C'(V_{DC}) V_{AC}^2 \sin 2\omega t - - \frac{1}{8} \omega C''(V_{DC}) V_{AC}^3 \cos 3\omega t + O(V_{AC}^4),$$
(3)

где штрихи обозначают дифференцирование.

Отсюда видно, что в общем случае ток I не является гармоническим. Как правило, измерительная цепь выделяет только первую гармонику тока I, и поэтому входящая в формулу (1) амплитуда I_{AC} представляет собой амплитуду первой гармоники I₁. Из (3)

следует, что с точностью до величины $O(V_{AC}^4)$ она равна

$$I_1 = \omega V_{AC} \left[C(V_{DC}) + \frac{1}{8} C''(V_{DC}) V_{AC}^2 \right],$$

и поэтому формула (1) определяет кажущуюся емкость С_{ар}, которая связана с фактической емкостью $C(V_{CD})$, следующим образом:

$$C_{ap} = C(V_{DC}) + \frac{1}{8}C''(V_{DC})V_{AC}^2.$$
 (4)

Очевидно, для того чтобы кажущаяся емкость C_{ap} была близка к фактической емкости $C(V_{DC})$, амплитуда напряжения V_{AC} должна удовлетворять условию

$$V_{AC}^2 << C(V_{DC}) / |C''(V_{DC})|$$
. Однако из выражения (4) следует, что емкость $C(V_{DC})$ может быть определена

другим способом, при котором выполнения приведенного условия не требуется. Действительно, можно измерить емкость C_{ap} при двух амплитудах — V_{AC1} и V_{AC2} — и затем найти $C(V_{DC})$ из полученной при подстановке этих данных в (4) системы двух уравнений. т. е.

$$C(V_{DC}) = C_{ap}(V_{AC1}) + \frac{C_{ap}(V_{AC1}) - C_{ap}(V_{AC2})}{\left(V_{AC2}/V_{AC1}\right)^2 - 1}.$$
 (5)

В некоторых случаях для определения параметров полупроводниковых структур и приборов на их основе используется вольт-фарадная характеристика с точкой перегиба (например, для определения концентрации незаполненных глубоких центров вблизи границы «пленка—подложка» [4], прогнозирования напряжения отсечки полевого транзистора [5], определения параметров полупроводниковых детекторов гамма-излучения [6]). Поскольку в точке перегиба вторая производная обращается в ноль, из (4) следует, что эту точку можно найти как точку пересечения кривых кажущейся емкости, измеренных при различных значениях амплитуды V_{AC} . Такой метод определения точки перегиба не требует двойного численного дифференцирования измеренной вольт-фарадной зависимости, которое может давать значительные погрешности.

Для проверки возможности определения фактической емкости описанным выше методом рассчитаем зависимость кажущейся емкости эпитаксиальной структуры GaAs от амплитуды переменного напряжения V_{AC}, найдем из этой зависимости фактическую емкость как предельное значение кажущейся емкости при уменьшении V_{AC} и сравним ее с емкостью, рассчитанной по формуле (5).

Из (1) и (2) вытекает, что кажущуюся емкость можно представить в виде

$$C_{ap}(V_{DC}) = \varepsilon \varepsilon_0 S \frac{E_{b1}}{V_{AC}},$$

где є — относительная диэлектрическая проницаемость полупроводника;

 ε_0 — диэлектрическая постоянная; S — площадь барьерного контакта; E_{b1} — амплитуда первой гармоники переменной составляющей \tilde{E}_b электрического поля E_b на границе «металл—полупроводник» при приложенном к барьеру Шоттки напряжении $V = V_{DC} + V_{AC} \sin \omega t$.

Таким образом, для расчета кажущейся емкости надо знать зависимость $E_b(V)$. Поскольку эпитаксиальные структуры GaAs содержат глубокие центры захвата в полуизолирующей подложке, зависимость $E_{\rm b}(V)$ будет разной при разных частотах переменного напряжения. В предельном случае будем считать, что частота переменного напряжения настолько высока, что глубокие центры не успевают перезаряжаться при изменении напряжения, и тогда

$$E_b(V) = E_b(V_{DC} + V_{AC}\sin\omega t)\Big|_{n_t = n_t(V_{DC})},$$

где *n*, — концентрация захваченных носителей.

Рассмотрим эпитаксиальную структуру, состоящую из низкоомной пленки толщиной h с контактом

типа барьера Шоттки и полуизолирующей компенсированной подложки бесконечной толщины. Пленка содержит только мелкие доноры с концентрацией N_d , а подложка — мелкие доноры и компенсирующие их глубокие электронные центры захвата акцепторного типа с концентрацией N_s и N_p , соответственно. Зафиксируем начало координат на границе «пленка—подложка» и направим ось ОХ перпендикулярно пленке в подложку.

Пусть к барьеру Шоттки приложено обратное напряжение V_{rev} . Распределение электрического поля Eи концентрации свободных носителей n в данной структуре описывается уравнением Пуассона

$$\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{q}{\varepsilon\varepsilon_0} \begin{cases} n - N_d & \text{при } x < h\\ n + n_t - N_s & \text{при } x > h \end{cases}$$
(6)

и уравнением непрерывности тока, которое в рамках диодной теории барьера Шоттки имеет вид

$$\frac{\mathrm{d}n}{\mathrm{d}x} = \frac{q}{kT} nE,\tag{7}$$

где *х* — координата вдоль оси ОХ;

- *q* заряд электрона;
- *k* постоянная Больцмана;
- *T* абсолютная температура.

Тогда концентрация захваченных носителей определяется как

$$n_{t} = \begin{cases} N_{t} \frac{n}{n+n_{1}} \text{ при } V_{rev} = V_{DC}; \\ n_{t}(V_{DC}) \text{ при } V_{rev} = V_{DC} + V_{AC} \sin \omega t, \end{cases}$$
(8)

где n_1 — зависящий от глубины центров параметр Шокли–Рида, который равен концентрации свободных электронов в зоне проводимости, когда энергетический уровень глубокого центра совпадает с уровнем Ферми.

Функции *E* и *n* непрерывны в точке x=h:

$$E(h=0)=E(h=0), n(h=0)=n(h=0)$$

и удовлетворяют следующему граничному условию в глубине подложки:

$$\underbrace{E}_{x \to \infty} 0 \Leftrightarrow \underbrace{n \to n}_{x \to \infty} n_{sub}, \tag{9}$$

где n_{sub} — концентрация свободных носителей в глубине подложки, связанная с N_t , N_s и n_1 условием электронейтральности

$$n_{sub} + N_t \frac{n_{sub}}{n_{sub} + n_1} = N_s.$$

В рамках диодной теории барьера Шоттки граничное условие на границе «металл—полупроводник» имеет вид

$$V_{rev} = \frac{kT}{q} \ln \frac{N_c}{n(0)} - \varphi_b / q, \qquad (10)$$

где N_c — эффективная плотность состояний в зоне проводимости; ϕ_b — высота барьера Шоттки.

Таким образом, для получения искомой зависимости $E_b(V_{DC}+V_{AC}\sin\omega t)$ необходимо решить краевую задачу (6), (7), (9), (10).

Представим *E* и *n* при обратном напряжении $(V_{DC}+V_{AC}\sin\omega t)$ в виде $E=E_0+\delta E$, $n=n_0+\delta n$, где E_0 , n_0 — решение системы (6), (7) при обратном напряжении V_{DC} .

С учетом (8), линеаризация уравнений (6), (7) дает

$$\frac{\mathrm{d}}{\mathrm{d}x}\delta E = \frac{q}{\varepsilon\varepsilon_0}\delta n,\tag{11}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\delta n = \frac{q}{kT} (n_0 \delta E + E_0 \delta n).$$
(12)

Линеаризованные граничные условия (9), (10) принимают вид

$$\underbrace{\delta E}_{x \to \infty} \to 0 \Leftrightarrow \underbrace{\delta n}_{x \to \infty} \to 0, \tag{13}$$

$$V_{AC}\sin\omega t = -\frac{kT}{q}\frac{\delta n(0)}{n_0(0)}.$$
(14)

Если известны E_0 и n_0 , то численное решение линейной краевой задачи (11)—(14) может быть получено стандартными неитерационными методами, например методом суперпозиции [7].

Найдем E_0 и n_0 . Как следует из (8), при $V_{rev} = V_{DC}$ из уравнений (6), (7) можно исключить координату x, что дает

$$\frac{\mathrm{d}E_0}{\mathrm{d}n_0} = \frac{kT}{\epsilon\epsilon_0} \frac{n_0 + N_t n_0 / (n_0 + n_1) - N_s}{n_0 E_0}.$$

Это уравнение легко интегрируется в аналитическом виде, что позволяет выразить концентрацию свободных носителей n_{0j} и электрическое поле E_{0j} в плоскости перехода «пленка—подложка» через напряжение V_{DC} в параметрическом виде, где параметром является максимальная концентрация n_m свободных носителей в пленке [8]:

$$n_{0j} = n_m \left(\frac{n_{sub}}{n_m}\right)^{\frac{N_t - N_s}{N_d + N_t - N_s}} \left(\frac{N_t}{N_s}\right)^{\frac{N_t}{N_d + N_t - N_s}} \times \\ \times \exp\left(-\frac{n_m}{N_d + N_t - N_s}\right);$$

$$E_{0j} = -\frac{\sqrt{2}kT}{ql_d} \left(n_{0j} - n_m + \ln\frac{n_m}{n_{0j}}\right)^{1/2};$$

$$V_{DC} = \frac{kT}{q} \left(\ln\frac{N_c}{n_m} + \frac{n_m}{N_d} + A^2\right) - \frac{\phi_b}{q};$$

$$A = \frac{h}{\sqrt{2}l_d} + 2\left(\ln 3 - \frac{n_m}{N_d}\right)^{1/2} -$$

Измеренная кажущаяся барьерная емкость структуры (1—4) и рассчитанная фактическая емкость (5) при различных значениях амплитуды V_{AC} (в мВ):

$$\begin{split} &-\frac{\sqrt{2}}{\sqrt{1+2p}}\ln\frac{\left(\sqrt{1+3p}+\sqrt{1+2p}\right)^2}{p} - \left(\ln\frac{n_m}{n_{0j}} - \frac{n_m}{N_d}\right)^{1/2};\\ &p = 1 - \frac{n_m}{N_d},\\ &\text{где } l_d = \sqrt{\frac{\epsilon\epsilon_0 kT}{q^2 N_d}} \quad \text{--дебаевская длина в пленке.} \end{split}$$

 $\sqrt{q} n_{d}$ Зная E_{0j} и n_{0j} , функции $E_0(x)$ и $n_0(x)$ можно найти численным интегрированием уравнений (6) и (7) с

$$E_0(h) = E_{0j}, \ n_0(h) = n_{0j}.$$

На **рисунке** представлены результаты расчета барьерной емкости для типичной эпитаксиальной структуры GaAs (*h*=0,2 мкм; *S*=300 мкм²; N_{z} =10¹⁷ см⁻³; N_{z} =5·10¹⁶ см⁻³; N_{s} =5·10¹⁵ см⁻³; n_{sub} =10⁹ см⁻³; φ_{b} = =0,8 эВ; *T*=300 К). Для наглядности приведен только участок резкого падения емкости, на котором зависимость кажущейся емкости от амплитуды измерительного переменного напряжения выражена наибо-

лее ярко. Отметим, что все кривые пресекаются в одной точке, а именно — в точке перегиба, как и должно быть в соответствии с формулой (4). Кривые 1 и 2 для V_{AC} =20 и 40 мВ совпадают, т. е. емкость, измеренная на этих амплитудах, является фактической. Емкость же, измеренная при V_{AC} =100 и 130 мВ, заметно отличается от фактической (кривые 3 и 4). Емкость, найденная для V_{AC} =100 и 130 мВ по формуле (5) (кривая 5), практически совпадает с фактической.

Таким образом, предложенный метод измерения позволяет повысить амплитуду переменного напряжения, обеспечивающую измерение фактической емкости, в несколько раз по сравнению с общепринятой методикой измерения.

Вольт-фарадные характеристики эпитаксиальных структур GaAs, имеющие участки резкого падения, могут быть измерены с достаточной точностью с применением обычно используемых амплитуд измерительного переменного напряжения (порядка 100 мВ) за счет проведения измерений на двух различных амплитудах.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Костылев С. А., Прохоров Е. Ф., Уколов А. Т. Явления токопереноса в тонкопленочных арсенид-галлиевых структурах.— Киев: Наукова думка, 1990.

2. Lehovec K. C–V analysis of a partially depleted semiconducting channel // Applied Physics Letters.— 1975.— Vol. 26, N 3.— P. 82—84.

3. Хучуа Н. П., Хведелидзе Л. В., Тигишвили М. Г. и др. Роль глубоких уровней в технологии арсенида галлия // Микроэлектроника. 2003. Т. 32, № 5. С. 323—343.

4. Gorev N. B., Kodzhespirova I. F., Privalov E. N. et al. Nondestructive deep trap diagnostics of epitaxial structures // Solid-State Electronics.— 2003.— Vol. 47, N 9.— P. 1569—1575.

5. Горев Н. Б., Коджеспирова И. Ф., Привалов Е. Н. Прогнозирование напряжения отсечки ионно-имплантированных полевых транзисторов с барьером Шоттки на GaAs // Технология и конструирование в электронной аппаратуре.— 2007.— № 6.— С. 3—5.

6. Bochek G. L., Kulibaba V. I., Maslov N. I. et al. Silicon pad detectors for a simple tracking system and multiplicity detectors creation // Problems of Atomic Science and Technology.— 2001.— N 1.— P. 36—39.

7. На Ц. Вычислительные методы решения прикладных граничных задач.— М.: Мир, 1982.

8. Gorev N. B., Kodzhespirova I. F., Privalov E. N. et al. Photocapacitance of GaAs thin-film structures fabricated on a semi-insulating compensated substrate // International Journal of High Speed Electronics and Systems.— 2004.— Vol, 14, N 3.— P. 775—784.

НОВЫЕ КНИГИ

Нефедов Е. И. Устройства СВЧ и антенны. М.: Академия, 2009. 384 с.

В учебном пособии изложены основы функционирования устройств CBЧ и антенн, описаны аналитические и численные методы их расчета и проектирования. Главное внимание уделено физическим принципам работы устройств и протекающих в них процессов. Рассмотрены типовые линии передачи, базовые элементы и функциональные узлы антенно-волноводных систем, их физические, математические и электрические модели.

Для студентов учреждений высшего профессионального образования.