К. т. н. В. П. ЗАЙКОВ, к. т. н. Л. А. КИНШОВА, к. т. н. В. Ф. МОИСЕЕВ, Л. Д. КАЗАНЖИ, Д. А. КЛЮЧНИКОВ

Украина, г. Одесса, НИИ «Шторм»

Дата поступления в редакцию 09.04 2009 г. Оппонент д. ф.-м. н. Л. Н. ВИХОР (Ин-т термоэлектричества, г. Черновцы)

ПРОГНОЗИРОВАНИЕ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ ДВУХКАСКАДНОГО ТЕРМОЭЛЕКТРИЧЕСКОГО ОХЛАЖДАЮЩЕГО УСТРОЙСТВА В РЕЖИМЕ ΔT_{max}

Предложена модель взаимосвязи показателей надежности и основных значимых параметров двухкаскадного ТЭУ заданной конструкции с последовательным электрическим соединением каскадов.

Одним из наиболее приемлемых способов обеспечения теплового режима элементов и составных частей РЭА является термоэлектрический, к числу основных преимуществ которого следует отнести примерное соответствие показателей надежности и массогабаритных характеристик термоэлектрического устройства (ТЭУ) и элементов электроники.

Использование ТЭУ в РЭА позволяет повысить надежность аппаратуры за счет обеспечения тепловых режимов термозависимых элементов.

При решении ряда практических задач по достижению низких температур можно использовать такой термоэлектрический способ охлаждения как каскадирование термоэлементов [1].

В ряде случаев проектирования термоэлектрических охлаждающих устройств для РЭА в распоряжении разработчика имеются конкретные конструкции каскадных ТЭУ (с определенным количеством термоэлементов в каскадах, геометрией ветвей термоэлементов и т. д.) либо стандартные модули, на основе которых собираются каскадные ТЭУ.

При построении каскадных ТЭУ, в первую очередь, возникает необходимость оценки показателей их надежности, а также максимально достижимого уровня охлаждения при вариации соотношения количества термоэлементов в смежных каскадах и условий функционирования.

Применение двухкаскадных ТЭУ позволяет обеспечить более низкую температуру охлаждения элементов электроники по сравнению с однокаскадным вариантом.

При определении показателей надежности каскадного ТЭУ, а именно интенсивности отказов λ либо вероятности безотказной работы *P*, полагаем, что все элементы ТЭУ, в том числе и каскады, соединены электрически последовательно, и выход из строя любого термоэлемента (ветви) приводит к выходу из строя модуля, каскада и устройства в целом. События, заключающиеся в выходе термоэлементов из строя, принимаются независимыми [2, 3].

Так как каждый каскад ТЭУ работает в различных температурных условиях [4], это необходимо учи-

тывать при оценке показателей надежности. Поэтому целью настоящей работы была оценка показателей надежности двухкаскадного ТЭУ заданной конструкции в режиме максимального перепада температуры $\Delta T_{\rm max}$.

Соотношение для оценки показателей надежности двухкаскадного ТЭУ можно представить в виде суммы показателей надежности каждого каскада.

С учетом [5], для *N*-каскадного ТЭУ можно записать формулу для суммарной интенсивности отказов λ_{Σ} в виде

$$\frac{\lambda_{\Sigma}}{\lambda_{0}} = \sum_{i=1}^{N} \frac{n_{i}(\Theta_{i} + C_{i})(B_{i} + \frac{\Delta T_{i\max}}{T_{i-1}}\Theta_{i})^{2}}{(1 + \frac{\Delta T_{i\max}}{T_{i-1}}\Theta_{i})^{2}} k_{Ti}, \qquad (1)$$

откуда для двухкаскадного ТЭУ запишем

$$\frac{\lambda_{\Sigma}}{\lambda_{0}} = \frac{n_{1}B_{1}^{2}(\Theta_{1} + C_{1})(B_{1} + \frac{\Delta T_{1\max}}{T_{0}}\Theta_{1})^{2}}{(1 + \frac{\Delta T_{1\max}}{T_{0}}\Theta_{1})^{2}}k_{T_{1}} + \frac{n_{2}B_{2}^{2}(\Theta_{2} + C_{2})(B_{2} + \frac{\Delta T_{2\max}}{T_{1}}\Theta_{2})^{2}}{(1 + \frac{\Delta T_{1\max}}{T_{0}}\Theta_{1})^{2}}k_{T_{1}} + \frac{(1 + \frac{\Delta T_{1\max}}{T_{0}}\Theta_{1})^{2}}{(1 + \frac{\Delta T_{1\max}}{T_{0}}\Theta_{1})^{2}}k_{T_{1}} + \frac{(1 + \frac$$

$$\frac{1}{\left(1 + \frac{\Delta T_{2\max}}{T_1} \Theta_2\right)^2} k_{T_2},$$
 (2)

где λ_0 — номинальная интенсивность отказов (λ_0 =3·10⁻⁸1/ч); индексы 1, 2 — соответствуют «холодному» и «горячему» каскадам; n — количество термоэлементов; B — относительный рабочий ток, $B=I/I_{1\text{max}}$; I_{max} — максимальный рабочий ток; Θ — относительный перепад температуры, $\Theta=\Delta T/\Delta T_{\text{max}}$; ΔT_{max} — максимальный перепад температуры в каскаде; C — относительная тепловая нагрузка каскада, $C_1 = \frac{Q_0}{n_1 I_{1\text{max}}^2 R_1}, C_2 = \frac{Q_0 + W_1}{n_2 I_{2\text{max}}^2 R_2}$; Q_0 — тепловая нагрузка; R — электрическое сопротивление ветви термоэлемента; W_1 — мощность потребления «холодного» каскада;

*T*₀ — температура теплопоглощающего спая;

- *T*₁ промежуточная температура между каскадами;
- *k_T* коэффициент, учитывающий влияние пониженной температуры.

Технология и конструирование в электронной аппаратуре, 2009, № 4

Величина промежуточной температуры T_1 зависит от режима работы ТЭУ, отношения количества термоэлементов в каскадах и т. д.

Для расчета основных параметров, входящих в выражение (2), с учетом температурной зависимости необходимо определить распределение температуры по каскадам. В том случае, когда конструкция ТЭУ задана, необходимо, в первую очередь, определить ее охлаждающие возможности.

Рассмотрим режим максимального перепада температуры $\Delta T_{\rm max}$ двухкаскадного ТЭУ и определим его максимальные охлаждающие возможности.

Перепад температуры на двухкаскадном ТЭУ можно записать в виде

$$\Delta T = \Delta T_1 + \Delta T_2 = \Delta T_{1\max}\Theta_1 + \Delta T_{2\max}\Theta_2.$$
(3)

При этом должны выполняться следующие условия функционирования каскадного ТЭУ:

а) холодопроизводительность определяется «холодным» каскадом и, следовательно, можно записать следующее выражение для Θ_1 :

$$\Theta_1 = 2B_1 - B_1^2 - \frac{Q_0}{n_1 I_{1\max}^2 R_1};$$
(4)

б) электрически последовательное соединение каскадов предполагает равенство токов в каскадах:

$$B_1 I_{\text{max}} = B_2 I_{2\text{max}}; \tag{5}$$

 в) условие теплового сопряжения каскадов можно записать с учетом [4] в виде

$$\frac{n_2}{n_1} = \frac{I_{1\max}^2 R_1 [2B_1(1 + \frac{\Delta T_{1\max}}{T_0} \Theta_1) + B_1^2 - \Theta_1]}{I_{2\max}^2 R_2 [2B_1 \frac{I_{1\max}}{I_{2\max}} - B_1^2 \frac{I_{1\max}^2}{I_{2\max}^2} - \Theta_2]}.$$
(6)

Тогда из (3) получим следующее соотношение для общего перепада температуры в зависимости от B_1 :

$$\Delta T = B_1 (2\Delta T_{1\max} + \Delta T_{2\max} c) - B_1^2 (\Delta T_{1\max} + b\Delta T_{2\max}) + B_1^3 \Delta T_{2\max} a - \Delta T_{1\max} C_1 - \Delta T_{2\max} d,$$
(7)

где
$$a = \frac{1}{\gamma} \frac{2\Delta T_{1\max}}{T_0};$$

 $\gamma = \frac{n_2}{n_1} \frac{I_{2\max}^2}{I_{1\max}^2} \frac{R_2}{R_1};$
 $b = \frac{1}{\gamma} \left(4 \frac{\Delta T_{1\max}}{T_0} + 2 + \gamma \frac{I_{1\max}^2}{I_{2\max}^2} \right);$
 $c = \frac{2}{\gamma} \left(\frac{\Delta T_{1\max}}{T_0} \frac{Q_0}{n_1 I_{1\max}^2} + \gamma \frac{I_{1\max}}{I_{2\max}} \right);$
 $d = \frac{C_1}{\gamma}.$

Из условия $\frac{d(\Delta T)}{dB_1} = 0$ получим выражение для

определения оптимального относительного тока B_1 , обеспечивающего максимальный перепад температуры ΔT :

$$3B_{1}^{2}\Delta T_{2\max}a - 2B_{1}(\Delta T_{1\max} + b\Delta T_{2\max}) + 2\Delta T_{1\max} + \Delta T_{2\max}c = 0.$$
(8)

Остальные параметры ТЭУ вычисляем по формулам

$$B_2 = B_1 \frac{I_{1\max}}{I_{2\max}}.$$
(9)

Полученное значение Θ_2 позволяет определить промежуточную температуру T_1 из выражения

$$\Theta_2 = \frac{T - T_1}{0.5 z_2 T_1^2},\tag{10}$$

а затем T₀ из соотношения

$$\Theta_1 = \frac{T_1 - T_0}{0.5z_1 T_0^2},\tag{11}$$

где z_1, z_2 — термоэлектрическая эффективность модулей.

Точные значения T_0 и T_1 можно получить путем последовательных приближений с учетом температурных зависимостей параметров.

Результаты расчетов основных параметров двухкаскадного ТЭУ, работающего в режиме ΔT_{max} , для различного соотношения количества термоэлементов в каскадах приведены в **таблице**. Расчеты проводились при *T*=300 K, Q_0 =0, *l/s*=10 (*l*, *s* — соответственно длина и площадь сечения ветви), *n*₁=9.

Расчеты показали, что с уменьшением отношения количества термоэлементов в каскадах n_1/n_2 увеличиваются значения ΔT_{\max} , B_1 , B_2 , Θ_1 , Θ_2 , а величина промежуточной температуры уменьшается. С уменьшением отношения n_1/n_2 увеличивается и интенсивность отказов, причем начиная с $n_1/n_2 \leq 0,2$ наблюдается ее резкое возрастание.

Приведенные зависимости позволяют оценить величину интенсивности отказов любой конструкции двухкаскадного ТЭУ при заданном количестве термоэлементов n_1 и n_2 в режиме $\Delta T_{\rm max}$.

Для определения вероятности безотказной работы *Р* двухкаскадного ТЭУ воспользуемся известным соотношением, связанным с интенсивностью отказов и ресурсом *t*:

$$P = \exp(-\lambda_{\Sigma} t) = \exp(-\lambda_0 n_1 \beta t), \qquad (12)$$

где

$$\beta = \frac{\lambda_{\Sigma}}{\lambda_0 n_1} = \frac{B_1^2 (\Theta_1 + C_1) (B_1 + \frac{\Delta T_{1\max}}{T_0} \Theta_1)^2}{(1 + \frac{\Delta T_{1\max}}{T_0} \Theta_1)^2} k_{T_1} + \frac{n_2}{n_1} \frac{B_2^2 (\Theta_2 + C_2) (B_2 + \frac{\Delta T_{2\max}}{T_1} \Theta_2)^2}{(1 + \frac{\Delta T_{2\max}}{T_1} \Theta_2)^2} k_{T_2}.$$
 (13)

На **рисунке** представлены зависимости интенсивности отказов и вероятности безотказной работы при ресурсе $t=10^4$ ч двухкаскадного ТЭУ от отношения n_1/n_2 для различного количества термоэлементов в первом каскаде.

$\frac{n_1}{n_2}$	$\frac{\lambda_{\Sigma}}{\lambda_{0}}$	$\lambda_{\Sigma}, \ 10^{-8} \ 1/ч$	Р	$\Delta T_{\rm max},$ K	<i>Т</i> ₁ , К	T _{0min} , K	Θ_1	Θ_2	B_1	<i>B</i> ₂	<i>I</i> , A	$rac{\lambda_{\Sigma}}{\lambda_{0}n_{1}}$	
1,0	1,067	3,2	0,99968	65,6	278,7	234,4	0,708	0,23	0,46	0,417	2,13	0,1185	
0,67	3,3	9,91	0,999	76,3	269,7	223,7	0,824	0,35	0,58	0,54	2,58	0,367	
0,50	6,89	20,68	0,9979	82,4	264,0	217,6	0,916	0,44	0,71	0,64	3,12	0,766	
0,33	12,38	37,14	0,9963	88,4	255,4	211,6	0,947	0,581	0,77	0,71	3,31	1,375	
0,20	27,48	82,25	0,9918	94,2	248,3	205,8	0,984	0,72	0,87	0,8	3,7	3,05	
0,10	66,67	200	0,98	98,4	242,2	201,6	0,998	0,845	0,96	0,88	4,1	7,4	

Зависимость интенсивности отказов (*a*) и вероятности безотказной работы (*б*) двухкаскадного ТЭУ от отношения количества термоэлементов в каскадах при *T*=300 K, *Q*₀=0, *t*=10⁴ ч: $1 - n_1=3; 2 - n_1=9; 3 - n_1=27$

Здесь видно, что интенсивность отказов увеличивается, а вероятность безотказной работы уменьшается при уменьшении отношения n_1/n_2 , а также с ростом количества термоэлементов в «холодном» каскаде.

Таким образом, предложена и рассмотрена модель взаимосвязи показателей надежности двухкаскадного ТЭУ заданной конструкции с основными значимыми параметрами при последовательном электрическом соединении каскадов. Полученные соотношения позволяют оценить как охлаждающие возможности, так и показатели надежности (интенсивность отказов и вероятность безотказной работы) ТЭУ заданной конструкции, работающего в режиме $\Delta T_{\rm max}$, с учетом отношения количества термоэлементов в каскадах и температурной зависимости параметров.

Предложенный подход позволяет прогнозировать показатели надежности двухкаскадного ТЭУ заданной конструкции в различных условиях эксплуатации и вести оптимизированное проектирование РЭА с использованием ТЭУ.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Стильбанс Л. С. Полупроводниковые термоэлектрохолодильники.— Л.: Изд. АН СССР, 1957.

2. Леонтьев Л. П. Введение в теорию надежности радиоэлектронной аппаратуры. — Рига: Изд. АН ЛССР, 1963.

3. Моисеев В. Ф., Зайков В. П. Влияние режима работы термоэлектрического устройства на его надежность // Технология и конструирование в электронной аппаратуре.— 2001.— № 4–5.— С. 30—32.

4. Зайков В. П., Киншова Л. А., Ефремов В. И. и др. Охлаждающие возможности термоэлектрических устройств в широком диапазоне изменения температур // Тепловые режимы и охлаждение РЭА.— 2003.— Вып. 1.— С. 53—59.

5. Зайков В. П., Киншова Л. А., Марченко В. И. Влияние тепловой нагрузки на показатели надежности термоэлектрического устройства // Тепловые режимы и охлаждение РЭА.— 2003.— Вып. 1.— С. 56—62.